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FOREWORD 

The choice of stress variables controlling the behavior of unsaturated soils has 
been a challenge for geotechnical engineers for more than half a century and in 
particular in the last two decades. Many researchers in the world are still working 
on this aspect and Professor Eduardo Rojas is one of them. There are two main 
approaches: the first one considers two stress variables, generally the net stress 
(– ua) and matric suction (ua – uw); the other considers a single stress variable, 
generally called the effective stress. However, this latter approach generally 
shows deficiencies in reproducing the phenomenon of collapse under wetting. 

In several technical papers and in this eBook, Professor Rojas has developed a 
porous-solid model that considers micropores, macropores and their connections, 
and the fact that they can be saturated, unsaturated or dry. This model is very 
powerful and allows the determination of the Soil-Water Retention Curves on 
both the drying and the wetting paths. This model is also the key for the 
determination of an equivalent effective stress that allows the analysis of the 
different aspects of the mechanical behavior of unsaturated soils: compression 
strength, tensional strength and volumetric behavior. Application of the model to 
experimental results published in the literature gives remarkable results. 

Was it necessary to put all this information into one eBook? The answer is yes as 
it shows in one document the continuity from the physical model and the 
definition of an equivalent effective stress to their practical applications. Did the 
eBook provide a final response to the questions concerning representative stress 
variables for unsaturated soils? Probably not, but it gives a very consistent 
approach of the problem within the context of the existing literature and 
knowledge. It is a reference for all those interested to the behavior of unsaturated 
soils. 

Professor Serge Leroueil 

Laval University 
Quebec 
Canada 
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PREFACE 

With the introduction of the effective stress concept, the behavior of saturated 
soils could be clearly understood and the basic principles of the saturated soil 
mechanics could be established. The effective stress principle states that the 
strength and volumetric behavior of saturated materials are exclusively controlled 
by effective stresses. Constitutive models for saturated materials of different types 
are all based on the effective stress principle. Later the Critical State theory 
combined the strength and volumetric behavior of saturated soils in a simple and 
powerful constitutive model. A great number of models for saturated soils are 
based on the critical state theory. 

Things went not so smooth for unsaturated materials. More than fifty years ago 

Alan W. Bishop proposed an equation for the effective stresses of unsaturated 

soils. However, this equation was severely criticized because it could not explain 

by itself the phenomenon of collapse upon wetting of soils. In addition Bishop’s 

effective stress parameter  showed to be extremely elusive and difficult to be 

determined experimentally. Given these difficulties the use of the so called 

independent stress variables (mainly net stress and suction) became common in 

unsaturated soil mechanics. Different equations for the strength and volumetric 

behavior of soils were proposed and the theory for unsaturated soils became 

distant from that of saturated materials. The Barcelona Basic Model represents 

one of the most simple and completes models within this trend. The Barcelona 

Basic Model enhanced the Critical State theory to include unsaturated materials 

and give a plausible explanation to the phenomenon of collapse upon wetting. 

This model proved that this phenomenon could only be modeled if in addition to a 

volumetric equation, a proper elastoplastic framework was included. But then, the 

simulation of some particular phenomena related to the strength and volumetric 

behavior of unsaturated soils, appeal for the inclusion of the hysteresis of the soil-

water retention curve and the hydro-mechanical coupling observed in unsaturated 

materials. The difficulties met in introducing these aspects into the independent 

stress variables models made it clear that a different approach should be 

considered. Then, quietly elastoplastic models based on Bishop’s effective stress 

equation started to appear showing its superiority by including the hysteresis of 
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the soil-water retention curve and the hydromechanical coupling of unsaturated 

soils. And finally, the debate about the appropriateness of Bishop’s equation to 

represent the effective stresses for unsaturated soils is slowly coming to an end. 

This transformation on the construction of constitutive models for unsaturated 

soils is also leading towards a unified soil mechanics theory. 

This eBook shows how the effective stress principle can be applied to simulate the 

strength and volumetric behavior of unsaturated soils employing the same 

equations commonly used for saturated materials. The eBook initiates with an 

analysis of the stresses transmitted to the different phases of an unsaturated soil 

when it is loaded. This analysis results in an expression for the stresses carried by 

the solid skeleton of the material. This expression can be written in the same 

terms as Bishop´s effective stress equation and leads to an analytical expression 

for Bishop’s effective stress parameter . However, the variables required to 

obtain  cannot be experimentally determined. For that purpose, a network 

porous-solid model is developed able to approximately reproduce the structure of 

soils based on the grain and pore size distributions of the material. This porous-

solid model is able to determine the allocation of water in the pores of the soil and 

thus simulate the soil-water retention curves of the material including the 

scanning curves. It is also possible to obtain the required parameters to determine 

the value of Bishop’s parameter  and therefore compute the current effective 

stress. Nevertheless, the use of a network solid-porous model requires large 

memory storage capacity that cannot be presently found in common computers 

and thus the solid-porous model computer program becomes very slow. For that 

reason, a probabilistic solid-porous model is developed that reduces the storage 

requirements and speeds the simulations. Finally an elastoplastic framework is 

developed to account for the volumetric behavior of unsaturated soils including 

compacted materials. This framework allows the simulation of the collapse upon 

wetting phenomenon and explains some other phenomena that could not be 

explained using the independent stress variables approach. All these 

developments lead to a general framework for the strength and volumetric 

behavior of soils including saturated, unsaturated and compacted materials. In that 

sense, a unified soil mechanics theory is presently on its way. 
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CHAPTER 1 

Introduction 

Abstract: The use of the effective stress principle led to a general theory for the 
strength and volumetric behavior of saturated soils. Presently, all constitutive models 
for saturated soils are based on this principle. In 1959 Bishop proposed an equation for 
the effective stress of unsaturated soils. However, it was severely criticized because it 
could not explain by itself the phenomenon of collapse upon wetting. Moreover, an 
analytical expression for the determination of its main parameter  was not provided 
and in addition, its value could not be easily determined in the laboratory. Since then 
several equations to determine the value of parameter  have been proposed and fifty 
years later it is acknowledge that Bishop’s effective stress equation can be employed to 
simulate the behavior of unsaturated soils when it is complemented with a proper 
elastoplastic framework. 

Keywords: Saturated soil, unsaturated soil, effective stress, total stress, pore 
water pressure, air pressure, suction, constitutive model, volumetric behavior, 
shear strength, collapse, elastoplastic framework, state surface, independent stress 
variables, effective stress parameter. 

1.1. DIFFERENT APPROACHES FOR UNSATURATED SOILS 

Even though the idea of using effective stresses in the study of unsaturated materials 
is old, the incapacity to provide an explanation to the phenomenon of collapse upon 
wetting (among other reasons) made this approach to be abandoned for about forty 
years. During that time some other approaches to study the behavior of unsaturated 
soils were used. The state or constitutive surfaces [1], as the one represented in Fig. 
1, were used for some time. In these plots, the behavior of a certain state variable, as 
for example the void ratio, is plotted as a function of two independent stress 
variables mainly the mean net stress ሺ݌ҧ ൌ ݌ െ ݏ௔ሻ and suction ሺݑ ൌ ௔ݑ െ  ,௪ሻݑ
where p represents the total mean stress and ݑ௔ and ݑ௪ represent the air and water 
pressures, respectively. This procedure aimed to establish general mathematical 
relationships between the void ratio or the degree of saturation with the independent 
stress variables as Hung, Fredlund and Pereira [2] have done. This method 
represented to some researchers the acceptance of the inexistence of an effective 
stress equation for unsaturated materials (see for example [3]). However, state 
surfaces soon showed their limitations. For example, unicity could only be ensured 

Send Orders of Reprints at reprints@benthamscience.net

© 2013 The Author(s). Published by Bentham Science Publishers



4   The Use of Effective Stresses in Unsaturated Soils Eduardo Rojas 

under certain conditions especially because of the hysteresis of the Soil-Water 
Retention Curve (SWRC) and could not explain complex stress-path dependency. In 
any case, this task would have been formidable complex because the behavior of 
unsaturated materials depends not only on the mean net stress and suction but also 
on the degree of saturation and the structure of soils. Recently Zhang and Lytton [4] 
proposed a modified state-surface approach under isotropic stress conditions that can 
be applied to the study of the volumetric behavior of unsaturated soils including 
collapsing and expansive soils. 

Sometime later the independent stress variables approach was employed to study 
the behavior of unsaturated soils. The independent stress state variables were 
defined as those stresses controlling the strength and volumetric behavior of soils. 
By performing the analysis of the equilibrium of an elemental volume of 
unsaturated soil, Fredlund and Morgenstern [5] proved that the use of two out of 
three possible combinations of the stress variables represented by the total stress 
ሺߪሻ, the air pressure and the water pressure, were sufficient to completely define 
the state of stresses of an unsaturated sample. The three possible combinations 
are:  wu   with  a wu u ;  au   with  wu  ; and  au   with 

 a wu u . Being the last combination, net stress ሺߪത ൌ ߪ െ  ௔ሻ and suction, theݑ
most employed to study the behavior of unsaturated soils. 

 

Figure 1: State surface for the void ratio (after Matyas and Radhakrishna [1]). 
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This theoretical analysis co-validated the experimental observations made by 
Bishop and Donald [6] in 1961. These researchers performed a series of triaxial 
tests where the confining stress  3 , the air and the water pressures were all 
independently controlled during the loading of the sample. In this way the values 
of the net confining stress  3 au   and suction could be maintained constant 
throughout the test while the independent pressures could change. These results 
showed that the independent variations of 3 , au  and wu  had no effect on the 
stress-strain curve whenever the confining net stress and suction remained 
constant. However, a variation on these values resulted in marked changes in the 
stress-strain curve of the sample. 

With the use of the independent stress variables, the representation of the failure 
surface for unsaturated soils required, additional to the normal net stress ሺߪ௡ െ
 ௔ሻ and the shear stress ሺ߬ሻ axes, the inclusion of the suction axis as indicated inݑ
Fig. 2. This figure shows the failure lines for a saturated material (indicated by the 
friction angle ) and for an unsaturated one (indicated by the friction angle ߮௦) 
where for the later, the cohesion ሺܿሻ appears as a strength parameter. 

Following this tendency, Alonso, Gens and Josa [7] proposed a constitutive model 
for unsaturated soils based on the Modified Critical State Model developed by 
Roscoe and Burland [8]. This model, known as the Barcelona Basic Model 
(BBM), is one of the most simple and complete models to simulate the behavior 
of unsaturated soils including collapsing and expansive soils. One of the main 
contributions attributed to the BBM is that it clearly explains the phenomenon of 
collapse upon wetting by introducing the Loading Collapse Yield Surface (LCYS) 
as illustrated in Fig. 3. This phenomenon occurs when a saturated sample is dried 
(path AB in Fig. 3), then loaded by increasing the net stress (path BC) and finally 
wetted up to saturation (path CD). 

This behavior can be explained in the following terms: when a soil dries, it 
stiffens because additional contact stresses between solids particles develop and 
the soil behaves as a preconsolidated material. Therefore, when the sample is 
loaded by increasing the net stress, it slightly deforms. Subsequently, when the 
soil wets, the stiffness of the material vanishes as the additional contact stresses 
between solid particles disappears and at this stage, the volumetric deformation 
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that did not occur during the loading stage when the soil was dry, takes place 
suddenly during the wetting of the sample. This means that the sample returns to 
the saturated compression line of the material. The inability of Bishop’s equation 
to explain this behavior was one of the major reasons for its abandon during 
several decades. 

 

Figure 2: Failure lines for the saturated and unsaturated conditions. 

 

Figure 3: Simulation of the phenomenon of collapse upon wetting by the inclusion of the LCYS 
(after Alonso, Gens and Josa [7]). 
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1.2. EFFECTIVE STRESS 

In 1936 Terzaghi [9] stated the principle of effective stress for saturated soils 
leading to the equation: 

ᇱߪ ൌ ߪ െ  ௪ݑ

where    represents the effective stress. This equation implicitly considers the 
following two hypotheses: 

a) The solid particles and water are incompressible. 

b) The contact area between two particles is independent of the confining 
pressure and can be neglected. 

If one of these hypotheses is missing, then different equations can be obtained. 
For example, if the contact area between particles is considered, the stress 
regulating the shear strength of soils [10] can be written as: 

wk u     

where, 

 1 tan tank a     

In the above expression a represents the contact area between particles per unit 
area,  is the friction angle of the mineral comprising the solid particles and  is 
the internal friction angle of the granular media. 

On the other hand, according to Lade and De Boer [11], if the compressibility of 
the solid particles is considered, the value of parameter k for the volumetric 
behavior of saturated porous media is: 

  1 1 s ek n C C    

where n represents the soil porosity, sC  is the compressibility of the solid material 
comprising the solid particles and eC  is the compressibility of the soil structure. 
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The above expressions show that an effective stress does not represent a physical 
measurable quantity but it is an artificial stress used to simplify the relations for 
volumetric and strength behavior of materials and may include mechanical 
properties or state variables. That is to say, it represents a constitutive variable. 
However, for the range of stresses frequently used in geotechnical engineering, 
the variation of parameter k is so small that it is very difficult to determine, even 
with sophisticated laboratory equipment. Therefore, it can be said that Terzaghi’s 
effective stress equation represents an excellent approximation for both the shear 
strength and the volumetric behavior of saturated soils. 

Because of this simplification, when researchers were looking for an effective 
stress equation for unsaturated soils, it was assumed that such equation should be 
written as a function of stress variables only and this assumption gave rise to a 
great deal of confusion. 

In the late 50’s some researchers focused on the behavior of unsaturated soils and 
proposed different equations for the effective stress: Jennings [12], Croney, 
Coleman and Black [13], Bishop [14] and Aitchison [15] among others. However, 
only that proposed by Bishop [14] prevailed. This equation writes, 

 a a wu u u s           … (1.1) 

where   is a parameter mainly related to the degree of saturation  wS  of the 
material. 

Different expressions have been proposed for the value of parameter . For 
example Aitchinson [15] proposed the following relationship: 

0

1
0.3

s

w i wi
i

S s S
s




    

This equation considers that parameter  is a function of the addition of the 
product of the increment of the degree of saturation ( wiS ) multiplied by the 
value of suction ( is ) along the SWRC from suction cero to the current suction of 
the soil. This means that parameter  is not only related to the degree of saturation 
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of the material but also to the way water intrudes the pores of soil. In other words, 
the structure of soil also plays a role in the value of . A similar conclusion was 
reached by Jennings and Burland in 1962 when they reported that the void ratio 
also affects the value of parameter . 

Later Blight [16] proposed two different methods to determine the value of 
parameter : the first one is based on the comparison of the results of two triaxial 
tests, one performed on a saturated sample and the other on an unsaturated one. 
The second one, results from the analysis of contact forces between two solid 
particles linked by a meniscus of water. However, the author concludes that it is 
not possible to decide which method is the more convenient. 

Recently, Khalili and Khabbaz [17] proposed the following equation to determine 
the value of parameter  : 

0.55

ae

s

s



 

  
 

 

where aes  represents the air entry value. For suctions below the air entry value, it 
is considered that air is only present in the form of air bubbles, therefore a wu u  
and, Bishop’s equation reduces to Terzaghi’s effective stress equation. One 
important aspect of this equation is that it includes a parameter from the SWRC. 
The SWRC represents a relationship between the water content or the degree of 
saturation of the sample with suction. This trend, where significant parameters of 
the SWRC are used to obtain the value of , has been followed by other 
researchers with fair results as shown below. 

Based on experimental evidence Öberg and Sällfors [18] proposed that, for 
granular materials and degrees of saturation over 50%, parameter   may adopt 
the value of the degree of saturation ( wS  ). In this way, the simplified version 
of Bishop’s equation appeared. Some researchers have proposed other empirical 
expressions for parameter   based on the results of tests made on sand, silt and 
clay. Amongst the most successful are those shown in Table 1. It is interesting to 
observe that all these expressions are closely related to the SWRC. These 
expressions along with some others were confronted with the experimental results 
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of different soils collected by Garven and Vanapalli [19]. The results of this 
exercise showed that equation T1 was the most appropriate with 70% of success 
followed by equations T2 and T3 with only 25% and 17%, respectively. Even 
though equation T1 had a good rate of success, its major drawback is that it 
cannot account for the behavior of all types of soils as stated by Garven and 
Vanapalli [19]. 

Additional experimental results showed that the value of parameter   was 
affected by different factors such as the wetting-drying history, the voids ratio and 
the structure of the soil [6, 20]. 

Table1: Some relationships for the value of parameter  

Number Equation Author 

T1  wS
   

  = fitting parameter 

Vanapalli, Fredlund, Pufahl and Clifton [21] 

T2    1w r rS S S     

rS  = residual degree of saturation 

Vanapalli Fredlund, Pufahl and Clifton [21] 

T3 
wS   Öberg and Sällfours [18] 

Added to the problem of the determination of parameter  the validity of 
Bishop’s equation was questioned because it could not predict by itself the 
phenomenon of collapse upon wetting [20]. During this phenomenon, the volume 
of a soil sample suddenly reduces while the mean net stress remains constant. 
Therefore, intuitively, this phenomenon was interpreted as the result of an 
increment of the effective stress applied to the soil sample, while Bishop’s 
equation predicts the reduction of these stresses at wetting because suction 
decreases and becomes nil at saturation. 

However, it is now accepted that, because collapse represents a plastic volumetric 
response of the soil, it can only be explained when an elastoplastic framework 
similar to that proposed by Alonso, Gens and Josa [7] is added to a constitutive 
model based on the independent state variables approach. Similarly, collapse 
cannot be explained using a single constitutive variable as that represented by 
Bishop’s effective stress equation without an elastoplastic framework. 
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Only recently Bishop´s equation has reappeared on the constitutive modeling for 
unsaturated soils as it has proven major efficiency in coupling the hydraulic and 
mechanical behavior of unsaturated materials (see for example [22-25]). 

Although some attempts to obtain Bishop’s effective stress equation have been 
done over the years (see for example [1, 18, 26]) none of them have prevailed. In 
the next chapter, a procedure to obtain an analytical expression for parameter 
ispresented 

© 2013 The Author(s). Published by Bentham Science Publisher. This is an open access chapter published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
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CHAPTER 2 

The Effective Stress Equation 

Abstract: Based on the analysis of the equilibrium of solid particles of an unsaturated 
sample subject to certain suction it is possible to establish an analytical expression for 
Bishop´s parameter . The resulting stress can be used to predict the shear strength and 
volumetric behavior of unsaturated soils. This equation clarifies some features of the 
strength of unsaturated soils that up to now had no apparent explanation. The effective 
stress parameter  is written as a function of three quantities: the saturated fraction, the 
unsaturated fraction and the degree of saturation of the unsaturated fraction of the 
sample. A drawback to this expression is that the determination of these three 
parameters cannot be made from current experimental procedures. 

Keywords: Equilibrium, total stress, effective stress, suction, volumetric 
behavior, shear strength, effective stress parameter, saturated fraction, unsaturated 
fraction, dry fraction, degree of saturation of the unsaturated fraction, 
microstructure, macrostructure, water menisci, homogeneous material. 

2.1. INTRODUCTION 

Most natural soils show a bimodal structure consisting in a microstructure and a 
macrostructure [27]. The microstructure can be formed by packets of fine particles 
that flocculate and remain attached. These packets or aggregates contain the intra-
aggregate pores which are pores of small size. On the other hand, the 
macrostructure is the arrangement of packets of fine particles alone or mixed with 
solid grains that show the inter-aggregate and inter-particle (when solid grains are 
present) pores which are pores of larger size. In such a case, the size of pores 
usually ranges from 500m to 0.01m. The smallest pore size being close to the 
thickness of the adsorbed water layer which means that these pores never dry. 
This phenomenon accounts for the difference in the consistency of fine and coarse 
materials when dry. When the suction applied to a soil is low, great part of the 
macrostructure and the totality of the microstructure remain saturated. When 
suction increases, the saturated soil volume decreases in such a way that some 
solids are now completely surrounded by dry pores while others are only partially 
surrounded by saturated pores. Instead most of the microstructure is still saturated. 
Finally, for very high suction, the saturated soil volume tends to disappear while 
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the dry fraction increases. In the case of coarse materials the saturated fraction 
may completely disappear while for clayey soils this never happens because of the 
existence of intra-aggregated voids filled with layers of adsorbed water. Therefore 
it can be said that, in general, an unsaturated soil consists of a saturated fraction, 
where soil particles are completely surrounded by water, an unsaturated fraction, 
where solid particles are linked together by water menisci and a dry fraction 
where solids are completely surrounded by air. In some cases the bimodal 
structure may not appear for example in homogeneous dense sands. In that case 
the transit from the saturated to the dry condition happens very fast and the 
saturated fraction completely disappears at small values of suction while the dry 
fraction increases rapidly. This behavior is reflected on the SWRCs of every 
material as will be shown later. 

If a soil sample is confined in a closed environment at a constant temperature 
during an appropriate period of time, then it can be admitted that the relative 
humidity is the same everywhere in the sample and therefore, the value of suction 
is constant throughout the sample. Thus, air and water pressures in the saturated 
zones are the same as for the unsaturated. This implies that all saturated zones are 
surrounded by menisci of water showing the same radius of curvature as the 
unsaturated zones. 

2.2. EFFECTIVE STRESS EQUATION 

Consider a homogenous and isotropic soil showing a bimodal structure where 
pores are randomly distributed as shown in Fig. 1. The term homogenous means 
that a representative elementary volume can be used to model the whole material 
as this volume adequately reflects both the microstructure and macrostructure of 
the system. The term isotropic means that the mechanical and geometrical 
properties are the same in all three directions, including the spatial distribution of 
menisci. 

The solid particles constituting both the macro and the microstructure can be 
observed in Fig. 1. Also the water menisci and gas phase are included. In general, 
it is considered that the solid particles of the microstructure are grouped in the 
form of packets. In this case, the influence of the contractile skin is ignored as 
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both Haines [28] and Murray [29] demonstrated that its influence could be 
ignored for practical purposes. Also the water vapor, adsorbed water and 
dissolved air are disregarded as Murray [29] has proved that their influence is also 
minimal. Finally, the contact areas between solids will be neglected as implicitly 
considered in Terzaghi’s effective stress equation. Based on a Disturbed State 
Model, Desai and Wang [30] performed an analysis of the effective stress on 
saturated soils which includes the effect of the variation of the contact area of 
solids. A similar procedure could be used herein if the contact area of solids was 
not neglected. 

For this analysis, the following notation is used: a superscript indicates the 
fraction being referred: ݏ for the saturated, u for the unsaturated and d for the dry 
fraction of the soil. A subscript indicates the phase being referred: ̃ݏ for solids, w 
for water and a for air. A double subindex indicates the influence of one phase to 
another; for example, saA  and swA  represents the area of solids subjected to air 
and water pressure, respectively. 

Considering a unitary thickness of the soil section shown in Fig. 1, it can be 
established that the total area (A) of the cross section B-B’, results from the 
addition of the saturated  sA , the unsaturated  uA  and the dry fractions ( dA ) 
of the sample, that is to say s u uA A A A   . Also, the total area of the saturated 
fraction results from the addition of the area where water directly reacts ( s

wA ) plus 
that occupied by solids ( s

sA ), in the form s s s
w sA A A   . Moreover, the solid 

particles on the saturated fraction are only in contact with water and other solids. 
If the contact area between solids is neglected, then all the horizontal projection of 
the area of solids represented in section B-B’ is subject to the water pressure; that 
is s s

s swA A  . Therefore the total area of the saturated fraction can be written as the 
addition of the areas where water directly reacts plus the horizontal projection of 
solids pushed by water in the form: 

s s s
w swA A A   … (2.1) 

On the other hand, the total area of the unsaturated fraction results from the sum 
of the areas where the solid ( u

sA ), liquid ( u
wA ) and gas ( u

aA ) phases react, that is 
u u u u

s w aA A A A   . Additionally, the solids also are in contact with the three 
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phases. If the contact area between solids is ignored, then the horizontal 
projection of the solids on section B-B’ results from the sum of the areas of solids 
where the pressures of liquid    

1 2
( )u u u

sw sw swA A A     and air ( u
saA ) react: 

u u u
s sw saA A A    … (2.2) 

Figure 1: Section of an unsaturated soil showing the contact areas of the different phases. 

Finally, in the dry fraction all particles are surrounded by air and also they are in 
contact with other particles. Again, if the contact area between particles is 
neglected then the total area of the dry fraction results from the addition of the 
area where air directly reacts plus the area of solids cut by line B-B’, in the form: 

ௗܣ ൌ ௔ௗܣ ൅ ௦̃௔ܣ
ௗ  

In this way, the total area for both the saturated and unsaturated fractions where 
the liquid phase reacts can be written as: 

̃

̃ ̃
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s s u u
w w sw w swA A A A A     … (2.3) 

and the total area where the air pressure reacts is: 

u u d d
a a sa a sa wA A A A A A A       … (2.4) 

If a vertical force F is applied on the plane B-B’, the equilibrium of the system is 
ensured by the reaction of each phase, resulting in the following equation: 

1 1s s a a w wF A A u A u A      … (2.5) 

where 1  is the total vertical stress and 1s   is the vertical stress transmitted by the 
solid particles. The term 1s sA    can also be written as 1 1s sA A    , where 1'  
represents the effective vertical stress which is related to the stress supported by 
the solid skeleton and therefore, it also can be related to the shear strength and the 
volumetric behavior of the material. Therefore, Equation (2.5) can be rewritten as: 

1 1 a a w wA A u A u A     … (2.6) 

Manipulating Equations (2.4) and (2.6), the following relationship is obtained: 

   1 1
w

a a w

A
u u u

A
         

 
… (2.7) 

where the term wA A  represents Bishop’s parameter  . Similar equations to the 
one shown above have been proposed by Matyas and Radhakrishna [1] and Öberg 
and Sällfors [18]. On one side, Matyas and Radhakrishna [1] stated that ݓܣ ⁄ܣ  
represents a measure of the saturated pore space and therefore this quantity 
depends mainly on the degree of saturation of the material. On the other side, 
Öberg [31] analyzed the value of the ratio ݓܣ ⁄ܣ  for a three dimensional ideal soil 
made of spheres in open and close packing. He observed that the value of this 
parameter was close to the degree of saturation (ܵݓ) for both cases, especially 
when ܵݓ ൒ 50%. He also reported that within this range, the difference between 
ݓܣ ⁄ܣ  and ܵݓ was not larger than 20%. Accordingly, these authors concluded that, 
under certain conditions, the ratio wA A  can be approximated to the degree of 
saturation of the soil, as its exact value is difficult to obtain in practice. 
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A more convenient way to write the quantity wA A  is using common soil 
mechanics volumetric relationships. According to Equations (2.1) and (2.3), the 
ratio wA A  can be expressed as: 

u us
w w swA A AA

A A A


   … (2.8) 

The term sA A  represents the ratio of the saturated area ( sA ) to the total area of 
the section (A). If pores are randomly distributed in a homogeneous isotropic 
material it can be proven that the areas of water, air and solids appearing in a 
cross section of a representative elementary volume of the material, adequately 
represent the volumetric distribution of the phases [32]. Therefore, the areas 
corresponding to each phase can be related to their respective volumes, in the 
form: 

s s
sA V

f
A V
  … (2.9) 

where sV  and V represent the volume of the saturated fraction and the total 
volume of the material, respectively. In that sense, sf  is called the saturated 
fraction of the soil. Therefore, according to Equation (2.1), the volume of the 
saturated fraction is obtained by adding the volume of solids completely 
surrounded by pores filled with water with the volume of those pores. The solids 
surrounded by water are called saturated solids. The saturated fraction is then 
obtained by dividing the saturated volume by the total volume of the material. 

On the other hand, Equation (2.2) can be rewritten as 

u u u u u
u u u u u u uv w a w a
s sw sa s s s su u u u

v v v v

A A A A A
A A A A A A A

A A A A


             

where u
vA  represents the area of voids of the unsaturated fraction. Gathering 

together the terms involving air pressure on one side, and the terms involving 
water pressure on the other, the following relationships can be found: 

 u u u u
sw s w vA A A A   and  u u u u

sa s a vA A A A  . Then, using the relationship 
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u u u u u u
s w a s vA A A A A A     , the term  u u

w swA A A   in Equation (2.8) can be 
written as: 

   1u u u u u u u
w sw w s v w

u
v

A A A A A A A

A A A A

 
  

… (2.10) 

Again, by considering the pores randomly distributed into a homogeneous 
isotropic material, areas and volumes can be related. Therefore, the above 
equation transforms into: 

 
u uu u

u uw w
wu u

v v

A VA V
S f

A A V V
  … (2.11) 

where u
wV  and u

vV  represent the volume of water and voids of the unsaturated 
fraction, respectively while uV  is the total volume of the unsaturated fraction, 

u u u
w w vS V V  represents the degree of saturation of the unsaturated fraction and 
u uf V V  represents the unsaturated fraction of the soil. Therefore, the volume 

of the unsaturated fraction results from the addition of the volume of all solids 
surrounded by a combination of saturated and dry pores plus the volume of these 
pores. These solids are called unsaturated solids. Those pores filled with water but 
in contact with both saturated and unsaturated solids are considered part of the 
saturated fraction. This is so because they are part of the pores that surrounds a 
saturated solid. The unsaturated fraction of the soil is then represented by the 
unsaturated volume divided by the total volume of the material. Additionally, 
there may be a dry fraction represented by the volume of dry elements divided by 
the total volume of the sample. The volume of dry elements is obtained by adding 
the volume of dry solids with the volume of pores surrounding these solids. The 
dry solids are those particles exclusively surrounded by dry pores. The addition of 
the saturated, unsaturated and dry fractions results in unity: 

݂௦ ൅ ݂௨ ൅ ݂ௗ ൌ 1… (2.12) 

Finally, the degree of saturation of the unsaturated fraction is represented by the 
volume of water of the unsaturated fraction divided by the volume of voids of this 
same fraction. 
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Finally, by using Equations (2.7), (2.8), (2.9), (2.10) and (2.11), the effective 
vertical stress can be written as: 

11
s u u

ws f S f       … (2.13) 

where 1  represents the net stress in the vertical direction. Accordingly, the 
tensorial form of the effective stress can be expressed as: 

s u u
ij ij a ij w iju s f S f           

where ij  represents the delta of Kronecker. By multiplying the above relation by 

ij , it becomes: 

' s u u
a wp p u s f S f p s        … (2.14) 

where 'p , p  and p  represent the mean effective stress, the mean total stress and 
the mean net stress, respectively. By comparing Equations (2.13) and (1.1), the 
value of Bishop’s parameter   can be found: 

s u uw
w

A
f S f

A
    … (2.15) 

The variables sf  and u
wS  can also be written as a function of the global degree of 

saturation ( wS ) and the void ratio (e) of the soil in combination with the variables 
s s

v v vr V V  and s s
s s sr V V   , which represent the ratio of the volume of voids of 

the saturated fraction ( s
vV ) to the total volume of voids of the soil sample ( vV ) and 

the ratio of the volume of solids of the saturated fraction ( s
sV ) to the total volume 

of solids of the soil sample ( sV ), respectively, 

   1
u s

u s sw w v
w w v vu s

v v v

V V V
S S r r

V V V


    


 

/ /

1 1

s s s s s ss
s v s v s s s v sV V V V V V er rV

f
V V e e

  
   

 
      



20   The Use of Effective Stresses in Unsaturated Soils Eduardo Rojas 

where wV  represent the total volume of water of the sample. Then, Bishop’s 
parameter   can also be expressed as: 

 1 1
1 1 1

s s s s s
s u s v s w v v s

w s
v

er r S r er r
f S f

e r e


    
           

   … (2.16) 

That is to say, Bishop’s parameter   not only depends on the global degree of 
saturation of the soil but also on the global void ratio and the volume of voids and 
solids of the saturated fraction. 

By applying the principles of thermodynamics and specifically that of enthalpy, 
Murray [29] proposed a coupled stress cp  to normalize the shear strength of 
unsaturated soils subject to different suctions. The comparison with experimental 
results, however, showed some scatter and the results of saturated tests could not 
be included into the formulation. In his study, Murray [29] obtained the value of 
Bishop’s parameter as    1 1weS e    , which is somehow similar to 
Equation (2.16). The difference comes from the fact that Murray neglected the 
effect of air pressure on the solid particles. 

Equation (2.13) can also be written as: 

11 1s au s          … (2.17) 

where s u u
s ws s f S f        is called the matric suction stress and represents 

that part of the effective stress generated by matric suction. In the case of 
saturated soils  1, 0, 1s uf f    , the effective stress becomes Terzaghi’s 
effective stress. For a completely dry soil, as for example clean sand, ( 0sf   and 

0u
w wS S  ) the effective stress becomes the net stress. Finally, for the case of a 

soil with no saturated fraction, for example a poorly graded clean sand subject to a 
small suction where all water appears in the form of menisci ( 0,s u

w wf S S  ), 
the effective stress becomes Bishop’s stress with wS  . 

According to the principle of effective stress, the equation for the shear strength 
of unsaturated soils can be written as: 

 tan tannn s        … (2.18) 
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where ߪԢ௡ and ߪത௡  represent the effective and the net normal stress, respectively. 
A similar equation has been proposed by Vanapalli, Fredlund, Pufahl and Clifton 
[21], even though the matric suction stress was written solely as a function of the 
degree of saturation and the residual degree of saturation. This equation states that 
the effect of suction on the strength of soil is simply the increment of the contact 
stress between particles produced by the presence of menisci of water, as assumed 
by Haines [33]. 

If the shear strength equation for unsaturated soils (Equation (2.18)) is derived 
with respect to soil suction, then the following relation is obtained: 

 tan 1
us

s u u u uw
w w

Sf
f S f s S f

s s s

 
                 

 

with 

   
 2

1

1

s s
s s ss v

v s vs

r re e
e r e r er

s s s sf

s e

   
          

 




 

   

 2

1

1

s s
s sw v v

v w vu
w

s
v

S r r
r S r

s s sS

s r

     
            

 
 

Then, the slope at the origin (s = 0 and 1sf  ), has the value: 

0

tan
ss

 


    
 

In other words, the initial slope of the increment of the shear strength with soil 
suction equals the internal friction angle. This result has also been experimentally 
observed by different researchers, for example: Escario, Jucá and Coppe [34] and 
Gan and Fredlund [35]. However, none of them attempted to explain this finding. 

The equation of the failure surface on the plane of mean effective stress versus 
deviator stress can be written in the same form as for saturated soils: 
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ݍ ൌ  Ԣ… (2.19)݌ܯ

where q represents the deviator stress and the slope of the failure surface M is 
given by: 

ܯ ൌ
6 sin߮
3 െ sin߮

 

Because of the hysteresis of the loading-unloading and drying-wetting curves, the 
behavior of unsaturated soils is influenced by the wetting-drying history of the 
soil. This influence has been observed by experiments carried out by Bishop and 
Blight [36], Allan and Sridharan [37], Nishimura, Hirabayashi, Fredlund and Gan 
[38] and Sivakumar and Wheeler [39]). 

If the functions defining parameters sf , uf  and u
wS  were known, then the matric 

suction stress could be expressed solely as a function of suction. That is why some 
of the equations proposed for parameter   based exclusively on the value of 
suction or the degree of saturation and some properties of the SWRC, show 
certain convergence with the experimental results [17, 21]. 

The main drawback of the analysis shown above is that parameters f s, f u, and ܵ௪௨ 
cannot be obtained from direct experimental procedures. For example, 
Klubertanz, Laloui, Vulliet and Gachet [40] have been using the neutron 
tomography procedure and the image processing to study the flow of water and 
the strains of unsaturated materials. These images discriminate the solid, the water 
and the air phases in different sections of the material and the porous and solid 
structures of the sample can be observed using an image processor. Nevertheless, 
the resolution of this equipment is around 0.125 mm which means that this 
method cannot be used for silty or clayey soils and, only the images of coarse and 
medium sands have been generated using this technique. This inconvenient has 
been overcome by combining this method with the X ray tomography which 
allows a resolution of the order of microns. It can be expected that in the next 
future the combination of these techniques could provide experimental values for 
parameters f s, f u, and ܵ௪௨ required to compute the effective stress of unsaturated 
soils. 
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In the meanwhile an alternative procedure for obtaining the values of these 
parameters is throughout a porous-solid model. A model of this type should be 
able to represent the structure of real soils by considering the pore and grain size 
distributions. Additionally, it should be able to reproduce the phenomenon of 
hydraulic hysteresis during wetting-drying cycles. A model of this type is 
described in the next chapter. 

© 2013 The Author(s). Published by Bentham Science Publisher. This is an open access chapter published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
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CHAPTER 3 

The Porous-Solid Model 

Abstract: In the previous chapter, an analytical expression based on the equilibrium of 
the solid particles of an unsaturated soil sample subjected to loading was established in 
order to determine Bishop´s parameter χ. This parameter can be written as a function of 
the saturated fraction, the unsaturated fraction and the degree of saturation of the 
unsaturated fraction of the sample. However, the determination of these three 
parameters cannot be made from current experimental procedures. In order to quantify 
these parameters, a porous-solid model capable of simulating the structure of real soils 
is proposed herein. The data required to build the porous-solid model are the grain and 
pore size distributions in addition to the void ratio of the material. 

Keywords: Porous-solid model, soil structure, macropores, mesopores, 
micropores, sites, cavities, bonds, network porous models, random models, 
distinct element method, pore size distribution, grain size distribution, soil-water 
retention curves, pore shrinkage. 

3.1. INTRODUCTION 

Only recently it has been acknowledge that Bishop´s effective stress equation 
ᇱߪ) ൌ തߪ ൅  may lead to more realistic and simple constitutive models for (ݏ߯
unsaturated soils (see for example [22, 24, 25]). However, the problem of a proper 
determination of parameter χ still subsists as it has been experimentally 
recognized that the approximation ߯ ൎ ܵ௪ is not satisfactory for most soils. 

In the previous chapter, the analysis of stresses in the skeleton of an unsaturated 
soil showing a bimodal structure resulted in an effective stress equation for 
unsaturated materials (Equation (2.13)). Unfortunately, parameters sf , uf  and 

u
wS  required for the determination of the effective stress cannot be obtained from 

current laboratory techniques. 

An alternative procedure for the determination of parameters sf , uf  and u
wS  is 

the use of a porous model able to simulate the distribution of water in the pores of 
soils and hence reproduce the SWRCs. 

Some simplified porous models have been already developed to study different 
phenomena such as capillary condensation and evaporation [41] or activated 

Send Orders of Reprints at reprints@benthamscience.net
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chemical absorption in heterogeneous surfaces [42]. Also, Fredlund and Xing [43] 
proposed an equation that defines the SWRC based on the Pore Size Distribution 
(PSD) of the material. More recently Simms and Yanful [44] proposed a porous 
network that correctly simulates the SWRC, relative hydraulic conductivity, 
volume change and PSD. However, these latter models do not account for 
hysteresis. One way to include hysteresis and observe in detail the influence of 
water menisci on the deformation and volumetric behavior of unsaturated soils is 
by mean of a micromechanical model. This type of models is more complex than 
simple porous models because, besides simulating the porous structure, it also 
simulates the solid skeleton of the material and may include the phenomenon of 
shrinkage of macropores at drying. A model with these characteristics can be used 
to determine the values of parameters sf , uf  and u

wS  required to compute the 
effective stress for unsaturated soils. Three of these models are described below. 

3.2. DIFFERENT TYPES OF POROUS-SOLID MODELS 

The accurate description of real porous media, such as soils, is quite a 
complicated task, if only because they have millions or billions of pores per gram 
which sizes ranges from 0.01 to 500 micrometers. Another problem is the 
phenomenon of hysteresis. Already in 1929, Haines [28] postulated that the main 
drainage SWRC occurs at higher suctions than the main wetting curve, because 
the latter is controlled by the largest pores while the former, is controlled by the 
smallest. Additionally, when load or suction increases there is a reduction in the 
size of the largest pores. Simms and Yanful [45] studied the shrinkage of pores by 
analyzing the changes in the PSD of a glacial till during suction increases. They 
noticed that the PSD of this material exhibits two crests, as shows Fig. 1. The first 
of these crests, the one located at approximately 0.1m, corresponds to the 
mesopores, i.e., those that maintain their size when suction increases. The other 
crest (located at approximately 5m) corresponds to the macropores, which shrink 
with increasing suction. Simms and Yanful [45] observed that for this particular 
soil, practically all macropores experienced a progressive shrinkage as suction 
increased. For suctions of the order of 2.5MPa, practically all macropores had 
shrunk, and their size diminished to approximately the size of mesopores. The 
same type of behavior was observed for other soils. Additionally, there is the 
shrinkage of pores with loading. Simms and Yanful [46] performed a series of 
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PSD tests on different soils subject to different confining stresses. These results 
show a general trend for both macropores and mesopores to reduce their size with 
increasing confining stresses although, macropores reduce their size largely more 
than mesopores. 

Accordingly, a simplified description of the structure of soils that captures the 
phenomena described above can be made with four elements: the macropores, the 
mesopores, the connectors and the solids. Both macropores and mesopores 
represent the cavities or sites of the porous media. These elements contain most of 
the volume of voids. The mesopores are those pores from medium to small size. 
The macropores are the largest pores in the soil and differ from the mesopores in 
that the former shrink with increasing suction or load. The connectors or bonds 
are the elements that link together the cavities. These pores are the smallest in the 
porous media and can also be called micropores. The volume contained by bonds 
is negligible compared to that of cavities. Finally, solids are included in the spaces 
left by pores and form the skeleton of the material. If an analogy is made between 
the porous structure of a soil and a building, then the rooms and corridors of the 
building represent the cavities while the doors and windows represent the bonds. 
Additionally, the solid structure of the building represents the skeleton of the soil. 

Each one of these elements (macropores, mesopores, bonds and solids) posses its 
own size distribution however, its spatial distribution is strongly correlated given 
the geometrical restrictions to be fulfilled. These correlations allow reproducing in 
a simplified manner the structure of soils. Therefore, a porous-solid model built 
with these elements can simulate the most important aspects of the wetting-drying 
phenomena, as for example the hydraulic hysteresis of the SWRC and the 
shrinkage of macropores. For this purpose, the model must comply with certain 
conditions that allow it to correctly describe the main phenomena of real soils. 
These conditions are: 

a) Heterogeneity of sizes. Meaning that all elements (macropores, 
mesopores bonds and solids) have their own size distribution. 

b) Compressibility of the network. This can be accomplished by 
allowing the shrinkage of macropores when suction or load increases. 
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c) Geometrical restrictions, in order to guarantee that the bonds 
connecting to one site do not intersect one another. 

d) Size correlation between neighbors. Meaning that there is a statistical 
correlation between the sizes of the different elements meeting at a 
certain place such as cavities with bonds and cavities with solids. This 
correlation naturally appears during the construction of the model 
given the geometrical restrictions to be fulfilled. 

e) Non-uniform connectivity, as the number of bonds converging at one 
site may change from site to site. 

f) Segregation between fine and coarse particles, as fine particles join 
together and appear in the form of packets of different sizes. 

g) Isolated clusters, as some pores remain inaccessible at wetting or 
drying. 

 

Figure 1: PSD for a glacial till (after Simms and Yanful [45]). 

The presence of isolated clusters is confirmed by the existence of the primary and 
secondary boundary curves. The primary boundary curves at wetting or drying are 
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obtained from independent tests beginning with completely dry ( 0wS  ) or fully 
saturated ( 1wS  ) materials, respectively. However, when drying-wetting cycles 
are applied, the degree of saturation never reaches these limits and the secondary 
boundary curves appear (see Fig. 2). With further cycling, these curves remain 
unchanged [47]. It is clear that a real soil exposed to wetting-drying cycles 
behaves according to the secondary boundary curves. This phenomenon has been 
called permanent hysteresis, and means that the relationship between the capillary 
pressure and the degree of saturation is not unique but depends on the history of 
the wetting-drying cycles [48]. The secondary boundary wetting and drying 
curves develop when free water intrudes or withdraws, respectively, from the 
pores of the material. Moreover, free water is responsible for most of the capillary 
phenomenon in unsaturated soils and therefore, the influence of adsorbed water 
can be neglected. In that sense, a porous model intending to take account of the 
capillary phenomenon will only consider the influence of free water in the form of 
an effective degree of saturation as will be shown later. 

 

Figure 2: Experimental SWRCs (after Ray and Morris, [49]). 

In the following sections three different types of models are presented which 
comply in a major or minor degree with some of the conditions stated above. 
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3.2.1. Distinct Element Models 

One of the first attempts to develop micromechanical models is due to Cundall 
and Strack [50] who developed the Distinct Element Method (DEM). These 
authors consider the solids as disc shaped particles of different sizes. Knowing the 
spatial distribution (structure) of the solids and the external loads, contact stresses 
and deformations can be determined. Since these models first appear they have 
been evolving and presently they can deal with the micromechanics of unsaturated 
soils, among other applications. A model of this type has been developed by Gili 
and Alonso [51] which correctly simulates different phenomena of unsaturated 
materials. This model is briefly described below. 

To properly simulate the behavior of unsaturated materials through a 
micromechanical model, menisci have to be added as new elements and the forces 
they introduce at the contact between solids need to be considered. In general, 
simple geometrical shapes as discs or spheres of different sizes are considered for 
solid particles (see Fig. 3). Then, the shape of the menisci and therefore the 
additional stresses on the solids solely depend on the arrangement or structure of 
the solids and the current water content (or suction). When a boundary condition 
is modified, the water content may change as a result of water transfer in the form 
of liquid or vapor. This transfer may occur along the surface of solids or through 
the pores. When this happens a new distribution of forces occurs and the spatial 
distribution of solids changes. Therefore the micromechanical model should 
include three different elements: the solid particles, the pores and the menisci of 
water. A model of this type can be very helpful in understanding the mechanisms 
involving the volumetric response of the material produced by a combination of 
load and suction. Also the effect of suction on the strength of unsaturated soils can 
be studied. In addition, micromechanical modeling can be used to verify some 
hypothesis made in elastoplastic constitutive modeling. The model can be two-
dimensional (2D) or three-dimensional (3D). They require reproducing 
realistically the forces induced by water menisci. This type of models is 
applicable mainly to sands and silts although it can also explain some features of 
the behavior of fine soils showing a structure made of aggregates or packets of 
particles. This type of structure can be obtained by compaction on the dry side. 
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Figure 3: DEM model considering 592 spherical particles. 

In the micromechanical model, capillary forces are computed from the Laplace 
equation for double capillary radii: 

ݏ ൌ ௦ܶ ቀ
ଵ

௥భ
൅ ଵ

௥మ
ቁ… (3.1) 

where r1 and r2 represent the radii of the meniscus and Ts is the air-water 
interfacial tension. The contact force between two spherical grains of radii r 
linked by a meniscus of water covering the surface of the grain with an angle 4 
measured from the center to the surface of the particle is according to Haines [33]. 

Δߪ௡ ൌ
 ߨ ௦ܶሺ1 െ 2 tan ሻߠ

ሺ1ݎ ൅ tanߠሻ
 

The current position of solids, pores and menisci is followed by three connectivity 
matrices: particle-menisci matrix, pore-menisci matrix and menisci-particle/pore 
matrix. The first two specify the menisci located on the periphery of a solid and 
the third identifies the two solids linked by a specific water meniscus. All three 
matrices are required to establish the flow equations amongst different elements. 
Moreover, all the transfer processes are described by a linear mass-flow rate 
equation of the type: 
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Δܯ௜௝

Δݐ
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where ΔMij is the mass of a given species interchanged in a time increment Δt 
between entities i and j. pi defines the pressure or concentration of a given species 
at entity i and Kij is a generalized transfer coefficient which includes geometrical 
terms and constitutive flow parameters such as permeability and diffusivity. The 
types of flow considered by the model are: air-air, vapor-vapor, air (gas)-air 
(dissolved), water (vapor)-water-liquid, liquid-liquid, water-dissolved air. The 
first two occur exclusively in the pores, the following two occur between pores 
and menisci and the last two occur exclusively in the water menisci. 

The equilibrium force and particle displacements are computed according to the 
procedure described by Cundall and Strack [50]. A 2D rheological model 
considering elastic, plastic and viscous units is used to simulate the contact 
between particles (see Fig. 4). All individual particles must remain in equilibrium. 
At any contact between particles both normal (N) and shear stresses (T) are 
considered. The forces exerted by the menisci are considered to be normal to the 
tangent plane. The limiting shear force between particles is given by the condition 
ܶ ൑  .where μ is the contact friction coefficient ,ܰ ߤ

This micromechanical model has been applied to the simulation of different stress 
paths, for example: isotropic loading at constant suction, collapse test including 
the effect of deviator stress, loading-wetting tests, loading-drying tests and 
wetting-drying cycles. 

The simulation of the collapse test included the loading stage by increasing the 
mean net stress in several steps; from 2kPa to 4kPa, then to 6kPa and finally to 
10kPa. Fig. 5 shows the distribution of forces at contacts between particles at 
2kPa and 10kPa. Observe that not only the distribution and intensity of the total 
forces change but also the shape of the sample modifies with loading. To simulate 
the collapse of the structure, suction has been reduced in two steps; initiating at 
90kPa it has been reduced to 10kPa and finally to 0kPa. Fig. 6 shows the 
distribution of the total force at contacts when suction reaches 10kPa. The sample 
reacts by reducing its volume and modifying its shape. 
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These type of simulations show in detail some important aspects of the behavior 
of soils for example: when loading is applied, the associated volumetric reduction 
is mainly the result of the destruction of larger pores giving rise to new smaller 
pores. Also the reduction of the potential of collapse with the increase in the 
intensity of confining stress can be reproduced on loose soils. This phenomenon 
occurs because the increase on the confining stress already causes an important 
volumetric reduction of the material. 

 

Figure 4: Rheological model at particle contact (from Alonso, Rojas and Pinyol [52] with 
permission from SMIG). 

Also, the change in suction produced by an instantaneous loading as well as the 
volumetric response during drying-wetting cycles can be studied with these 
simulations. Specially, the reduction of irreversible deformation with the number 
of drying-wetting cycles. 

Due to computational constraints this type of models uses a limited number of 
solids, ranging between 1,000 to 10,000. The Grain Size Distribution (GSD) and 
the water content are introduced as data whereas the PSD in the model is obtained 
by quantifying the number and size of the voids left by the solids when the initial 
target void ratio is reached. This procedure constitutes in fact one of the main 
disadvantages of this type of models because they cannot reproduce a particular 
PSD as it emerges from the random distribution of solids. Still solids can be 
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arranged differently depending on the nature and formation process of the soil 
[53]. This means that, depending on the fabric process, a soil sample may show 
different PSDs even if both the GSD and the void ratio remain the same as is 
shown in Fig. 7. And because the SWRCs depend on the PSD of the material, a 
different set of SWRCs can be obtained for each fabric. 

3.2.2. Random Models 

Another type of model that has been recently developed to include both the GSD 
and the PSD of the material [54] are the random models. These models are built in 
a bi-dimensional or three-dimensional grid made of squares or cubes. With the 
GSD, the PSD and the void ratio (e) of the material it is possible to define the 
number of solids and cavities of each size that need to be placed within a certain 
area or volume. 

 

Figure 5: Distribution of total forces at different net stress (a) 2kPa, (b) 10kPa (from Alonso, 
Rojas and Pinyol [52] with permission from SMIG). 
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Figure 6: Total force distribution when suction is reduced from 90kPa to 10kPa (from Alonso, 
Rojas and Pinyol [52] with permission from SMIG). 

(a) (b)  

Figure 7: Two different PSDs for the same GSD and void ratio (after Leonards, Alarcon, Frost, 
Mohamedzein, Santamarina, Thevanayagam, Tomaz and Tyree, [53]). 

For the case of a bi-dimensional model a rectangular area with dimensions L in 
length and H in height is considered. In order to create an area with a number of 
elements that can be processed with ease by a common PC, the dimensions of this 
area are established by the following conditions: 20 Dmax < L < 250 Dmin and H < 
150 Dmin where Dmin and Dmax represent the diameter of the smallest pore and the 
largest solid to be placed on the rectangular area, respectively. These conditions 
were established in order to have an adequate number (not too small and not too 
large) of both the largest solids and the smallest pores. Once the area of the model 
has been defined, it is fully covered with squares whose sides represent √ߨ 2⁄  
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times the diameter of the smallest element in the model (Dmin) equivalent to one 
pixel. Therefore, a total of N = [L/Dmin]x[H/Dmin](4/) pixels are placed within 
this area. These squares are called basic units and are used as a pattern to place the 
solids and cavities of the model. The number of basic units occupied by a solid or 
pore of certain size is established in such a way that all sizes are multiples of the 
basic unit. In the case of soils, the GSD usually shows larger sizes than the PSD 
although they may have some overlap. This means that the basic units represent 
the smallest cavities of the material. 

The number of solids and cavities of each size are obtained from the GSD and the 
PSD of the soil, respectively, when plotted in the axis of volume fraction versus 
size. The volume fraction is defined as the ratio of the volume of solids (or 
cavities) which size ranges between certain limits to the total volume of solids (or 
cavities). To each volume fraction, the mean size of its range is assigned. The 
range of sizes for each volume fraction is selected in such a way that all mean 
sizes are multiples of the basic unit. As the void ratio represents the proportion 
between pores and solids, the product of the factor e/(1+e) by the volume fraction 
of cavities divided by the volume of a single cavity corresponding to that size, 
results in the number of cavities of a specific size. In the same way, the product of 
the factor 1/(1+e) by the volume fraction of solids divided by the volume of a 
single solid corresponding to that size, represents the number of solids of that 
specific size. 

Once the number of cavities and solids of each size has been determined, they are 
located in the model’s area. In order to include all the required elements into the 
model’s area, solids and cavities are placed at random following a size strategy 
which consists of placing these elements from the largest to the smallest. The 
location of solids and cavities initiates by randomly selecting a basic unit within 
the model’s area where one of the largest solids is to be placed. Then, the basic 
units needed to represent the size of this solid are found using a polar searching 
procedure. This procedure consists of placing an origin of polar coordinates at the 
center of the selected basic unit and then turning around this origin with a 
constant radius to locate the closer adjacent elements that are available to generate 
the solid. The angle of rotation is gradually increased until a complete turn is 
made. If the required number of basic units is still not completed, the radius is 
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increased. This process continues until the required number of basic units is 
found. All new elements formed during this process, in addition to complying 
with the established number of basic units, must also comply with a continuity 
condition. This condition establishes that a basic unit which is part of an element 
should have contact at least on one of their faces with another basic unit of this 
element. This condition allows the existence of different shapes for solids and 
cavities, but does not permit the generation of “strangled” elements i.e., elements 
with basic units that have contact solely at one corner. Once all basic units 
constituting an element have been identified, they are assembled in a single 
element using a Boolean function. Additionally, all the basic units contained by 
this element are deleted from the list of available basic units. This procedure 
avoids the overlap between neighboring elements although they may have contact 
at the corners or sides of other elements. Once all the largest elements have been 
formed, the next smaller size elements (whether they are solids or cavities) are 
generated. This procedure continues until all solids and cavities have been located 
into the model’s area. If at any location, the required number of basic units 
forming a continuous solid or pore cannot be found then another site is randomly 
selected until both conditions are fulfilled. Fig. 8 shows the flow diagram to locate 
and generate the solids and pores on the model´s area. 

With this procedure, the largest elements show more regular shapes than the 
smaller which tend to show irregular shapes. This occurs because the former are 
the first to be placed and have no restrictions in gathering adjacent basic units 
whereas the later are formed with the basic units left by larger elements. This 
process ends with the elements one size larger than the basic unit as these last do 
not require the random location procedure. 

In most cases, not all elements of the smaller sizes can be located in the network 
because not enough groups with the required number of continuous basic units 
can be found. This usually happens with the elements one size larger than the 
basic unit because they are the last ones to be randomly placed in the network. 
These elements usually require groups of four or more basic units to be formed. 
To solve this problem, the following procedure has been adopted. First, the 
program identifies the groups with the larger number of basic units still available  
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Figure 8: Flow diagram for the construction of the random porous-solid model. 
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in the model and verifies if any of the neighboring solids or cavities around this 
group has additional adjacent basic units still available at their boundaries. If the 
program identifies the required number of basic units along the boundaries of 
these elements then it proceeds to rearrange them. To this purpose, the identified 
elements are disassembled into their basic units and then, the basic units required 
to increase the size of the group for the new element are liberated and substituted 
by the available basic units located at their boundaries. Finally all these elements 
are reassembled with their new basic units. 

This process is illustrated in Fig. 9. Suppose that pores made of four basic units 
constitute the elements one size larger than the smallest size represented by the 
basic unit. Consider that some of these pores have already been generated but still 
some more are required. However, no more continuous groups of four basic units 
can be found in the model’s area. Consider also that at a certain location a 
continuous group of two basic units is found (pore P4). Then the neighboring 
elements to this pore (Solid S1, Solid S2, Solid S4 and Pore P3) are analyzed to 
identify the basic units that are still available at their boundaries. In this case, 
elements S2 and P3 are selected as they are in contact with the basic units B1 and 
B2 still available. Next, S2 and P3 are disassembled to liberate two basic units that 
are in contact with pore P4. Then S2 and P3 are reassembled by including the 
available basic units found at their boundaries. Finally, Pore P4 is generated using 
the liberated units from its neighbors. With this procedure all cavities and solids 
can be inserted into the model’s area. 

   

Figure 9: Generating Pore P4 by disassembling and reassembling Solid S2 and Pore P3. 
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When all solids and cavities have been located (see Fig. 10), the bonds or connectors 
are included in the porous structure by linking neighboring cavities. A maximum and 
a minimum connectivity number are established for the model. This means that the 
number of bonds connected to each cavity can vary between these limits. These 
values can be established from the experimental results obtained by Dullien [55] on 
a sandstone sample. Dullien [55] reported a connectivity varying from 2 to 10 with a 
mean value of 2.9 and very low frequencies for connectivity ranging between 7 and 
10. By extrapolating these results to the case of soils, it can be said that their 
connectivity may vary from 2 to 6. 

The connectivity of pores in the model can be established by using the 
aforementioned polar search procedure. The search for the neighboring sites of a 
cavity starts with a radius slightly larger than the equivalent radius of the cavity 
being considered and is performed by increments of the polar angle. If the 
minimum connectivity number is not reached at the end of a complete turn, then 
the searching radius is slightly increased and the procedure continues until the 
connectivity reaches at least its minimum value at the end of a complete turn. This 
process can also be stopped when the number of connecting elements reaches the 
maximum established value. For the model discussed herein, a minimum 
connectivity of 2 and a maximum of 6 were considered according to the 
discussion above. When this process is concluded for all cavities, a size is 
randomly assigned for each bond or connector. This size is obtained from the 
bond size distribution of the material. Because bonds are always smaller than the 
cavities they are connect to, the size of a bond is selected exclusively from those 
sizes smaller than the smallest cavity to which the bond is connected to. 

If the size distribution for both cavities and connectors could be experimentally 
determined, then the porous model could predict both branches of the SWRC. 
Unfortunately at present, the experimental determination of the PSD for porous 
materials includes solely the size distribution of cavities because the volume of 
bonds or connectors is, in general, negligible compared with that of cavities. 
Therefore, to overcome this lack of information, the shape of the curve of the size 
distribution of connectors is considered to be similar to that of cavities while the 
size of connectors is obtained by adjusting the numerical drying SWRC with the 
experimental one. This is equivalent to horizontally displace the size distribution 
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curve of connectors in the axis of pore size until the best fit between the numerical 
and the experimental drying curve is obtained. The drying curve is the one to be 
fitted because it is mainly dependent on the size distribution of bonds or 
connectors as aforementioned. The adjustment of the size of bonds practically 
does not affect the wetting curve which is mainly dependent on the size 
distribution of cavities. In addition, as connectors are the last elements to be 
placed in the model, their size can be modified once solids and cavities have been 
located. This facilitates the fitting process for the drying curve. The necessity of 
fitting the drying SWRC represents an important drawback to the model which 
could only be avoided by supposing a value for the ratio between the size of 
cavities and bonds as both curves are considered to show similar shapes. 

Once all cavities, connectors and solids have been distributed in the model, it is 
possible to simulate the main wetting SWRC as well as the scanning curves. To 
achieve this, each site is transformed into a circle of the same area and placed at 
the centroid of the irregular pore. 

To simulate the main drying curve it is assumed that all pores are initially 
saturated and that suction equals zero. Then suction is increased by steps and the 
critical radius (Rc) determined. This radius represents the lower limit of the size of 
pores able to drain during a drying process, and is given by the Lapace equation in 
the form of: 

ܴ஼ ൌ
ଶ  ೞ் ୡ୭ୱఏ

௦
… (3.2) 

where  is the water-soil mineral contact angle. In general, for the case of most 
soil minerals in contact with water it is considered that  = 0. According to 
Equation (3.2), all pores with radius R complying with the condition ܴ ൒ ܴ஼ will 
be able to dry. Therefore the model can identify all pores able to dry at the current 
value of suction. 

Once all pores which size is larger or equal to the critical radius have been 
identified, they are considered as potentially active, meaning that they can dry if 
they comply with the continuous path principle. This principle states that a pore 
can dry only if it is connected to a continuous path of previously dried pores that 
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reaches the boundary of the model where the bulk of gas is present. This type of 
pores is called active pores. This means that all boundary elements connected to 
the bulk of fluid (air or water) are already active pores whereas those elements 
located at the interior of the porous model need to be tested for this condition. 

The same procedure can be followed to determine the main wetting curve except 
that in this case, all pores are initially dry, suction has a very large initial value 
which reduces by steps and the potentially active pores are those complying with 
the condition ܴ ൏ ܴ஼. 

For the scanning curves, the initial drying or wetting stage is the same up to the 
point where the inversion takes place. When inversion occurs, only those pores 
that have been activated will be able to deactivate. This means that solely those 
pores that have been dried during a drying process are able to saturate when 
inversion takes place. Correspondingly, only those pores that saturate during a 
wetting process are able to dry after the inversion. 

The procedure to build the porous-solid model allows the generation of different 
solid structures for the same material meaning that even if the GSD and the void 
ratio are maintained constant, different PSDs can be generated. This characteristic 
is not considered by the porous models based on the DEM described earlier. With 
this model it is possible to study the effect of the structure of soils on the SWRCs. 
At its present stage this model can only roughly simulate the structure of soils. 
Refinements including a 3D version with larger number of elements and size 
ranges may result in better predictions. It is also possible to isolate the solids from 
the porous structure of the soil and include rheological models at the contacts 
between solids. This may allow simulating different phenomena as for example 
the volumetric deformation of the solid skeleton by loading or suction increase 
and the resulting variation of the PSD. Also the strength of the material at 
different suctions can be simulated in the same way as DEM models do. 

One of the main restrictions to this type of models is the number of elements that a 
common computer can handle efficiently. In its present version, the model can deal 
with 40,000 basic units. The size of the scratch memory of the computer is the main 
constraint to increase the number of elements in the model. This constraint imposes 
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additional restrictions related to the range of pore and solid sizes that the model is 
able to include. For example, if the model considers a large range of sizes for solids 
and pores, the number of basic units required to build the largest elements will be so 
big and the number of these elements will be so small that the SWRCs may show 
abrupt changes. Therefore, the range of sizes that the model is able to consider is of 
about one order of magnitude for both the GSD and the PSD. This also restricts the 
type of materials that can be considered by the model. For example, at present only 
the structure of clean sands or clean silts can be simulated. 

The computing time of the model greatly depends on the number of basic units 
and the number of elements of the porous-solid structure. A model made of 
10,000 basic units with six different ranges of sizes for solids and pores takes 
around three hours of processing in a common PC to simulate the main SWRCs. 

In order to verify the capabilities of the random model to simulate the SWRC of 
porous materials using its PSD as data, some experimental results for Vycor glass 
were used. Figs. 10 and 11 represent the solid and porous structure of the Vycor 
glass obtained from its PSD. The squares in Fig. 11 represent the cavities and the 
lines represent the bonds. In this case a minimum of 2 and a maximum of 6 bonds 
were assigned to each cavity. Fig. 12 shows a three-dimensional view of the 
porous structure of Vycor glass. 

 

Figure 10: Solid skeleton of the Vycor glass (in black). 
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Figure 11: Porous structure of the Vycor glass. 

Fig. 13 shows the numerical and experimental main SWRCs as well as the 
numerical and experimental results for two wetting scanning curves. From this 
figure it can be observed that the model simulates with fair accuracy the SWRC of 
the material. Improved results can be expected if the number of size ranges for 
pores and solids could be increased. 

 

Figure 12: 3D view of the porous structure of the Vycor glass. 
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Figure 13: Numerical and experimental main SWRCs and two drying scanning curves. 

3.2.3. Network Models 

Another type of porous-solid models recently developed is that made of nodes and 
connectors using regular networks. The nodes represent the sites or cavities and 
the connectors are the bonds or throats. The cavities are subdivided in macropores 
and mesopores. Solids are included in the spaces between these elements. The 
simplest porous-solid network models are those built on the plane where the 
cavities are represented by circles and the bonds or connectors by rectangles. In a 
three-dimensional configuration, the cavities are represented by spheres and the 
bonds or connectors by cylinders. The connectivity (C) represents the number of 
connectors meeting at a certain cavity and may have a constant value or it may 
vary from site to site. In this last case, it is sufficient to consider a certain number 
of connectors of size zero. 

Due to the presence of elements of different sizes that need to be arranged in a 
certain way, the model has to comply with a constructive principle that emerges 
from geometrical restrictions. This principle ensures that the porous network is 
physically possible. This principle states that in order to avoid the intersection of 
two adjacent connectors (i.e., those that meet at an angle of 90
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2 2
1 2B B Sr r r   

An important parameter that affects the morphology of porous networks is the 
overlap between the size distributions of connectors and sites. The larger the 
overlap, the more complex the generation of the network becomes. In fact there is 
a limit on the value of the overlap that allows the generation of networks without 
violating the constructive principle. In general, when there is a considerable 
overlap and a small but well differentiated number of sizes, the phenomenon of 
segregation appears. This phenomenon groups together elements of the same size 
in different zones of the network. In this way, small cavities gather around and are 
surrounded by bigger ones. This property allows the modeling of the structure of 
soils in a simplified way. A model of this type is described in the next section. 

3.3. THE NETWORK MODEL 

Similar to random models, network models include all four elements (macropores, 
mesopores, connectors and solids) distributed on a regular network. The porous-
solid network is generated following the Monte Carlo procedure. Positions for 
mesopores and connectors are initially assigned at random to completely fill the 
network. Thereafter the constructive principle is verified at every node. If the 
principle is violated at a certain location, an exchange between mesopores and/or 
bonds from another location (also determined at random) is simulated. If the 
number of infractions decreases with this exchange, then it is granted. This 
process continues till no infraction of the constructive principle subsists. 

Once this process is completed, then macropores are placed by substituting the 
required number of mesopores. Macropores are also placed at random, merely 
verifying that the site to be replaced is smaller than the substituting macropore. If 
this is not the case, then another site is selected at random until this condition is 
fulfilled. This procedure ensures the observance of the constructive principle. 

In the same way, solids are also placed at random but following a size strategy. 
This strategy ensures that the size of solids is related to the mean size of its 
surrounding pores. For example, according to Taylor [56], the pore size d between 
three spheres of the same size D in close arrangement is d = D/6.5; hence, here it 
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is considered that the size of a solid showing the size of gravel or sand that needs 
to be placed in a certain position of the network must be larger than three times 
the mean size of their surrounding pores, that is to say 3d D . On the other hand, 
clay particles exhibit a flat shape and, consequently, the aggregation of several 
particles may generate pores larger than their equivalent radii. Therefore, 
considering that fine particles associate in structures of four or more elements, 
with a void ratio larger or equal to two, it can be established that the maximum 
pore size d should be smaller than 0.5eD d , where eD  represents the equivalent 
diameter of clay particles. Silt particles lay between sand and clay, and therefore, 
their size lie between the limits 0.5 3d D d  . 

The distribution of solids in the pore network starts by specifying the size of the 
solid (gravel-sand, silt or clay) to be set in a particular place. This can be 
accomplished by retrieving the maximum and minimum sizes of pores 
surrounding that specific place. In general, when the constructive principle is 
being observed, pores of the same size can be found in different zones of the 
network. Then a solid the size of the specific group to be placed (gravel-sand, silt 
or clay) is picked up at random. If it does not comply with the required size range, 
another solid is picked up. If no more solids of the required size are available, 
then the range of possible sizes is enlarged until a solid can be found. A certain 
percentage of infractions among the total number of solids is accepted since, at 
the borders between fine and coarse materials, the presence of pores of very 
different sizes may lead to geometrical restrictions that no solid can satisfy. By 
observing these rules it is possible to build a network that approximately 
simulates both the solid and porous structure of soils. 

This model considers that the size distribution of all elements of the network 
(macropores, mesopores, connectors and solids) follow a logarithmic normal 
distribution, meaning that only two data are required to define each one of these 
distributions: the mean size ( തܴ) and the standard deviation (). These parameters 
are obtained from the PSD and the GSD of the material (both parameters for each 
distribution). It is also possible to use double or triple logarithmic normal 
distributions to better reproduce the PSD and GSD of mixed soils. In such a case, 
additional parameters relating the proportion between the volumes of the different 
distributions are required. One additional parameter is required for a double 
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normal distribution and two additional parameters are needed for a triple normal 
distribution. This parameter is called here the proportional volume factor, Pvf. 

The model can be built in two or three dimensions and in different sizes. 
However, as all elements in the network are placed at random, it implies that 
different networks could be built with the same data and hence, the principle of 
uniqueness of results could not be respected. This problem can be overcome when 
sufficiently large networks are used. In fact, this is a problem also faced during 
experimental procedures as the soil sample should be large enough to represent 
the properties of a specific mass of soil. Therefore, large networks are preferred to 
small ones as they lead to more realistic and consistent results especially when the 
overlap between bonds and cavities is large. In opposition, this type of networks 
increases significantly the required memory size and the computing time. In fact, 
an important restriction for the development of random networks is the 
requirements in memory size. For example, the biggest network that a common 
PC can manage with ease is a 1000 x 1000 plane network or a 100 x 100 x 100 
three-dimensional network. If an important overlap exists between cavities and 
bonds, the required computing time to construct the network is around 8 hours. 

Fig. 14 shows a portion of a network built according to the procedure described 
above. It sketches the four different elements included in the network: 
macropores, mesopores, bonds and solids. The upper left-hand corner of the 
network represents a portion of soil tending towards the coarse fraction where 
sand particles are accommodated. The lower right-hand corner represents a 
portion of soil tending towards the fine fraction where clay particles are set. 
Between these two groups a transition of silt is present and fills most of the 
network. Notice that the distribution of solids and pores is made on a regular grid 
for practical purpose, however the size of solids is not directly linked to the size 
of the space between the pores but rather to the pores size, as mentioned before. 
The length of connectors or bonds is considered as constant throughout the 
network. Because bonds are basically windows connecting two cavities they are 
considered to be very thin, therefore their length is considered to be similar to the 
size of the smallest cavities. In any case this parameter seldom affects the results 
provided by the porous model as the volume of connectors is negligible compared 
with that of cavities as aforementioned. 
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Figure 14: The elements of the porous-solid network: macropores, mesopores, bonds and solids. 

In addition, when the distribution of all elements is completed, it is necessary to 
verify that the ratio between the volume of voids and the volume of solids 
corresponds to the void ratio of the material. Because clay particles generally 
show a flat shape and the hydrometer technique reports equivalent radii that have 
little rapport with their volume, a parameter called shape factor fS  is introduced 
in order to adjust the solid volume to its real value. This parameter tends towards 
unity for clean rounded sand but decreases dramatically when the fine fraction of 
the soil increases, especially for clays with high specific surface. 

The model described above seems to be more appropriate for coarse materials 
where solids and pores show more or less spheroid shapes. In the specific case of 
clays, the solid particles are rather flat and the shape of pores largely varies from 
spheroids to slots [57]. In this last case, the size of bonds may be of the same 
order as that of cavities and therefore the model proposed herein is probably not 
the most appropriate. In addition, in the case of clays subject to small water 
contents, interparticle forces are dominated by the van der Wals interactions [58] 
which are not considered in this model. In any case, only the comparison between 
experimental and theoretical results would give light on this issue. 

3.4. MECHANISMS OF WETTING AND DRAINAGE 

Consider a porous network where the size distributions of cavities and connectors 
show a certain overlap. Consider also that no isolated clusters develop during the 
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wetting and drainage phenomena. Therefore, in the first stage of its development, 
the proposed model only attempts to simulate the primary boundary curves. 
Finally, assume that pores fill and empty according to Laplace’s equation given 
by relationship (3.2). 

Hence, when all pores are filled with water (i.e., suction is nil) and gas is forced 
into them by small increments of suction, the first elements to drain are the 
largest, while the smaller only drain when suction is further increased. This means 
that bonds control the drainage process. In contrast, when a dry soil is subject to 
wetting by small decrements of suction, the first elements to fill in with liquid are 
the smallest, while the larger only fill with further decrements of suction. This 
means that cavities control the wetting process. Under these considerations, the 
conditions for the drainage and imbibition of pores can be stated and the primary 
boundary curves obtained. 

3.4.1. Main Drying Curve 

Consider that a soil sample is undergoing a drainage process where some cavities 
and bonds still remain saturated. The required conditions for a bond to dry are the 
following: a) gas has penetrated at least one of the bonds surrounding the two 
sites linked by the bond being considered (given that sites are always larger than 
bonds, the former do not show any restriction regarding drainage, once one of 
their connecting bonds has been invaded) and b) gas should be able to penetrate 
the bond under consideration, meaning that the bond is larger or equal to the 
critical radius given by Equation (3.2). 

On the other hand, the conditions for a site to be filled with gas are as follows: a) 
at least one bond of the contiguous sites has already been drained. This means that 
at least one site contiguous to the one under consideration has been already filled 
with gas as sites show no opposition to be drained once one of their bonds has 
been drained. b) Gas should be able to fill the bond that links the site already 
filled with gas with the one being considered. In other words, this bond should be 
smaller or equal to the critical size. 

3.4.2. Main Wetting Curve 

Consider now that the soil is undergoing a wetting process with some sites and 
bonds already saturated. For a bond to be saturated, the following conditions 
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should be met a) at least one bond contiguous to the one being considered has to 
be saturated and b) water must be able to penetrate the site linking the saturated 
bond with the one under consideration, that is to say this adjacent site has to be 
smaller than the critical size. 

For a site to be liquid filled, the following conditions must be fulfilled: a) at least 
one site contiguous to the one being considered is already saturated and, because 
bonds are always smaller that sites, all bonds connected to this saturated site are 
also saturated and b) the site under consideration can be invaded by water; in 
other words, it should be smaller than the critical size. 

The degree of saturation can be easily obtained by dividing the current volume of 
sites and bonds filled with water by the total volume of pores. 

3.4.3. Secondary and Scanning Curves 

Once the primary boundary curves have been defined, the secondary curves can 
be easily obtained by considering that a certain number of elements remain 
inaccessible. This is readily done with the aid of a cluster coefficient cC , defined 
as the ratio of the volume of pores belonging to closed clusters to the total volume 
of pores. One value is required for the maximum degree of saturation reached 
during wetting and another for the residual degree of saturation attained during 
drying. In this way, maximum and minimum values for the degree of saturation 
are given to the primary curves so they become the secondary boundary curves. 
This is equivalent to exclusively consider the effect of free water in the porous 
model as it is the main responsible for the capillary phenomenon that affects the 
volumetric and strength behavior of unsaturated soils. 

In case of inversions during a wetting or drying path, the conditions required for 
the wetting or drainage of sites and bonds remain the same as for the boundary 
curves. The only change results from the number of sites and bonds able to 
saturate or drain. For example, consider that an inversion arises during a wetting 
path and that the distribution of sites and bonds already saturated is that shown in 
Fig. 15(a). Therefore, at the inversion to drying, only those sites and bonds that 
have already been filled with water will be able to drain. Additionally, Fig. 15(b) 
shows the distribution of sites and bonds filled with gas during a drying path. 
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Hence, when an inversion occurs, only those sites and bonds already filled with 
gas can saturate. With these considerations it is possible to generate the scanning 
curves during wetting-drying cycles. A flow diagram to build a computational 
network model is shown in Fig. 16. 

 

(a) 

 

(b) 

Figure 15: Comparison between the saturated and the total distributions for sites and bonds during 
a (a) wetting path and (b) drying path. 
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Figure 16: Flow diagram to build a computational network model. 
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Fig. 17 shows the wetting and drying boundary curves as well as some scanning 
curves obtained with the computational network porous model. These numerical 
results are similar to the experimental curves shown in Fig. 2. One of the main 
differences between Figs. 2 and 17 is that the numerical scanning curves become 
asymptotic to the secondary boundary curves, while the experimental results show 
that the scanning curves reach the boundary curves at a point not far from the 
inversion point. This behavior needs to be studied further to improve the results of 
the model. 

Figure 17: Boundary and scanning curves obtained from the computational network porous 
model. 

An option to overcome the constraints related to memory size and computing time 
in network models is the use of probabilistic network models [59]. In that case, 
the boundary curves can be established from the probability of a pore of a certain 
size to be drained or filled with water when subjected to a certain suction. A 
model of this type is developed in the next chapter. 
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Eduardo Rojas 

CHAPTER 4 

The Probabilistic Porous-Solid Model 

Abstract: In the previous chapter, a computational network porous model was 
developed to simulate the hydraulic behavior of unsaturated soils. However, important 
computational constraints make this model unpractical. In this chapter a probabilistic 
porous-solid model is developed to overcome these constraints. The probabilistic model 
is an alternative to the use of computational network models and shows important 
advantages. This model was built by analyzing the probability of a certain pore to be 
filled or remain filled with water during a wetting or drying process, respectively. The 
numerical results of the probabilistic model are compared with those of the 
computational network model showing only slight differences. Then the model is 
validated by doing some numerical and experimental comparisons. Finally a parametric 
analysis is presented. 

Keywords: Probabilistic model, network models, basic unit, hydro-mechanical 
coupling, solids, cavities, bonds, saturated fraction, unsaturated fraction, dry 
fraction, degree of saturation of the unsaturated fraction, retention curves, 
Bishop’s parameter, relative volume, porosimetry tests, macropores, mesopores, 
micropores. 

4.1. INTRODUCTION 

Recently, Bishop’s stress equation has been used for the development of simpler 
and more realistic constitutive models for unsaturated soils [22, 24, 25] not only 
because it can estimate approximately the strength of soils but also because it 
takes into account the hydro-mechanical coupling observed in unsaturated soils. 
This phenomenon becomes evident by the fact that the degree of saturation affects 
the stiffness and strength of soil samples subject to the same suction. Part of this 
phenomenon can be related to the hysteresis of the SWRCs as, for a single value 
of suction, a large range of values for the degree of saturation is possible. Another 
part can be related to the volumetric deformation of the sample during loading or 
suction increase as this in turn affects the SWRCs. 

The analysis presented in Chapter 2 shows that Bishop´s effective stress equation 
for unsaturated soils (Equation (1.1)) can be expressed as Equation (2.13) with 
parameter  defined by Equation (2.15). According to this last equation, 
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parameter  depends not only on the degree of saturation (Sw) of the sample, but 
also on the void ratio and the structure of the soil as experimentally observed by 
Bishop and Donald [6]. The main problem with the use of Bishop’s equation lies 
precisely on the determination of parameter . In this chapter, a probabilistic 
porous-solid model is developed for the determination of this parameter using 
both branches of the SWRC as data. 

4.2. THE PROBABILISTIC MODEL 

Based on the framework of the computational network model presented in the 
previous chapter, it is possible to develop a probabilistic porous-solid model [59]. 
The model is based on the concept of basic units which allows the introduction of 
the solid phase resulting in a porous-solid model that can be used to determine the 
current effective stress in an unsaturated material. Initially, basic units for sites 
and bonds are defined and the equations for the main boundary curves at wetting 
and drying are obtained. 

The procedure to develop the probabilistic model is as follows: first, an infinite 
bi- or three-dimensional network made of macropores, mesopores, bonds and 
solids is considered. Thereafter, the conditions for a pore (cavity or bond) to drain 
or saturate during a drying or wetting process are established. Then, based on the 
size distribution of each element, it is possible to write the above conditions in the 
form of probability equations. These equations can then be simultaneously solved 
and the probability for a pore of a certain size to drain or saturate during a drying 
or wetting process can be determined. Subsequently, it is possible to establish a 
ratio between the dried and saturated pores and thus obtain the degree of 
saturation of the material to finally plot the SWRCs in wetting and drying. 

This process requires knowledge on the distributions of the relative volumes of 
cavities  RSV  and bonds  RBV  as a function of their size. The relative volume is 
defined as the volume of the elements of certain size, divided by their total 
volume. These distributions can be obtained from the results of porosimetry tests. 
Once these distributions are known, it is possible to define the relative volume of 
cavities (macropores and mesopores)  CS R  and bonds or connectors  CB R  
smaller or equal to the critical radius CR  in the form, 
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   
0

CR

C RSS R V R dR  … (4.1) 

   
0

CR

C RBB R V R dR  … (4.2) 

When these integrals are solved for the full range of sizes the result is unity, 
which means that these functions in fact represent the distribution of probabilities 
for sites and bonds, respectively. These functions are represented in Fig. 1(a) and 
(b) for the wetting and drying path, respectively. 

Using the above equations it is possible to determine the volume of pores of a 
certain size. For example, if SV  represents the total volume of cavities, the 

product  
0

( )
CR

S C S RSV S R V V R dR   represents the volume of cavities from size 

zero to CR . 

(a) 

 

 (b) 

 

Figure 1: Relative volume distribution for saturated cavities and bonds at (a) wetting and (b) 
drying. 
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4.3. MAIN WETTING CURVE 

Consider a dry soil subject to a wetting path under controlled suction. During this 
process, some air bubbles may remain trapped within the irregularities of solid 
grains. Additionally, some pores may remain dry because, for example, all bonds 
connecting to a cavity may saturate before the cavity can fill with water because it 
is larger than the current critical size. However, for simplicity it is initially 
considered that all pores can saturate. This means that the equations for the 
primary SWRC at wetting and drying are initially developed and later the 
secondary curves are obtained. 

Fig. 2(a) shows the basic unit for cavities in a bi-dimensional porous network. It 
consists of a central cavity connected to four concurrent bonds each of which is 
connected to an external cavity. Consider that this basic unit is initially dry and 
subject to a wetting process. By inspecting this unit it can be established that the 
central cavity can saturate only if the following two conditions are simultaneously 
fulfilled: a) its radius is smaller than the current critical radius meaning that water 
can intrude the cavity and b) at least one bond connected to this cavity is already 
saturated and linked to the bulk of water. 

 

(a) (b) 

Figure 2: Basic units for (a) cavities and (b) bonds. 

The first condition is expressed as  CS R  according to Equation (4.1). The 
second condition implies that the cavity cannot saturate if all concurrent bonds 
remain filled with gas. This last condition can be expressed as  1

C

BIL  where C 
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is the connectivity of the network and BIL  represents the probability for a bond to 
be saturated and linked to the bulk of water. As pores can only exhibit one of two 
possible states: saturated or dry, then 1 BI BIL G   represents the probability of 
the bond to be filled with gas. Accordingly, the condition that at least one bond 
concurrent to the considered cavity is saturated and linked to the bulk of water can 
be expressed as  1 1

C

BIL    . Therefore, if SIL  represents the probability for a 
cavity to saturate during a wetting process, its value is given by the product of the 
two conditions listed above as they must occur simultaneously, in the form: 

 ( ) 1 1
C

SI C BIL S R L     … (4.3) 

Additionally, Fig. 2(b) shows the basic unit for bonds. This unit can be used to 
establish the conditions for bonds to saturate or dry. It consists of a central bond 
connecting two cavities each one connected to C-1 additional bonds. Based on 
this unit, it can be said that a bond can saturate during a wetting process only 
when the two following conditions are simultaneously fulfilled: a) Its size is 
smaller than the critical radius and therefore it can be invaded by water and b) at 
least one of its two connected sites is already saturated and linked to the bulk of 
water. The first condition can be represented by  CB R  according to Equation 
(4.2). The second condition can be expressed as  2

1 1 SIL    , where 

 2 21 SI SIL G   represents the probability of the two connected sites to be filled 
with gas at the same time. Therefore, if BIL  represents the probability for a bond 
to saturate during a wetting process, its value is given by the product of the two 
aforementioned conditions as they must occur simultaneously: 

   2
1 1BI C SIL B R L    … (4.4) 

By substituting the above relationship in Equation (4.3), it results in: 

      ( ) 1 1
C s

SI C C SI C SI CL S R B R L S R F R      … (4.5) 

Note that the exponent 2 in Equation (4.4) has been replaced by 1 in Equation 
(4.5). This is so because in Equation (4.5), SIL  represents the probability of a 
cavity to be filled with water. Therefore, its C converging bonds have only one 
additional cavity to which they are connected to and this cavity must comply with 
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the condition of being saturated (white cavities in Fig. 2(a)). Therefore, equation 
(4.4) transforms into  BI C SIL B R L . 

In addition, parameter  s
SI CF R  represents the proportion of cavities filled with 

water with respect to the total number of cavities during a wetting process, in 
other words, it represents a saturation factor at wetting for the function  CS R  
(see Fig. 1(a)). Therefore, the volume of saturated cavities during a wetting 
process at the critical radius CR  ( ௌܸூ

௦ ሺܴ஼ሻሻ can be found by multiplying the 
reduction factor by the volume of cavities which sizes range from zero to CR , in 
the form: 

     
0

CR
s s

SI C SI C SR
R

V R F R V R


   

where  SRV R  represents the volume of all sites of size R. This equation implies 
that there is a proportion of  s

SI CF R  of the total volume of sites which size ranges 
from zero to RC that saturate at wetting (see Fig. 1(a)).On the other hand, by 
substituting Equation (4.3) into Equation (4.4), it results: 

          
2

1
1 1 1 1

C s
BI C C BI C BI CL B R S R L B R F R

          
… (4.6) 

Note that the exponent C in Equation (4.3) has been replaced by C-1 in Equation 
(4.6). This is so because in Equation (4.6), BIL  represents the probability of a 
bond to be filled with water. Therefore its two connected sites have only C-1 
additional bonds that must comply with the condition that at least one of them 
should be filled with water (white bonds in Fig. 2(b)). 

The parameter  s
BI CF R  in the above relationship represents the proportion of 

bonds filled with water with respect to the total number of bonds which sizes 
range from zero to CR , i.e., it represents the saturation factor at wetting for the 
function  CB R (see Fig. 1(a)). 

In the same manner as for cavities, the volume of saturated bonds can be found 
with the product of the reduction factor by the volume of bonds of a certain size, 
in the form: 
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     
0

CR
s s

BI C BI C BR
R

V R F R V R


   

where  BRV R  represents the volume of all bonds of size R. 

It can be proved that Equations (4.5) and (4.6) are consistent as SIL  and BIL  are 
equal to zero and one when both ( )CS R  and  CB R  reach these same values. 
These equations can be solved by any iterative method and, in general, the 
convergence to the solution occurs in two or maximum three iterations with a 
tolerance of a thousandth. 

Accordingly, the degree of saturation at wetting (SwI) for a certain value of the 
critical radius (RC) is given by: 

     s s
SI C BI C

wI C
S B

V R V R
S R

V V





… (4.7) 

where VS and VB represent the total volume of sites and bonds. And because the 
critical radius is dependent on the value of suction according to Equation (3.2), it 
is possible to plot the wetting SWRC in the axes of suction vs. degree of 
saturation. 

Because the probabilistic model considers a network of infinite size, the effect of 
the borders is not taken into account. Either way, for very large networks this 
effect becomes negligible. For example, if it is assumed that at the borders of the 
network only solids and bonds can be found, then all bonds at the borders are 
connected to a single site. In a cubic network made of n sites by side, the 
proportion of bonds at the borders with respect to the total is approximately 3/n 
which represents a very small value if it is acknowledged that n is of the order of 
several thousands to several millions per gram of material depending on the type 
of soil. 

4.4. MAIN DRYING CURVE 

Consider now a drying process (see Fig. 1(b)). By inspecting the basic unit in Fig. 
2(a), it can established that a cavity should comply with one of the following two 
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conditions to remain saturated during a drying process: a) its radius is smaller than 
the critical size and therefore it cannot be drained or b) it is larger or equal to the 
critical size but at the same time, all its concurrent bonds are saturated. The first 
condition is represented by ( )CS R according to Equation (4.1). The second 
condition can be expressed as  1 C

C BDS R L   , where BDL  represents the 
probability for a bond to be saturated during a drying process. Then, if SDL  
represents the probability of a cavity to remain saturated and connected to the 
bulk of water during a drying process, its value is obtained by the addition of the 
two above conditions because they are complementary: 

   1 C
SD C C BDL S R S R L     … (4.8) 

Consider now the basic unit for bonds shown in Fig. 2(b). According to this 
figure, it can be established that a bond requires complying with one of the 
following two conditions in order to remain saturated during a drying process: a) 
its size is smaller than the critical radius and therefore, water cannot be displaced 
by gas or b) it can be invaded by gas but its two connected sites are saturated. The 
first condition can be written as  CB R  according to Equation (4.2). The second 
condition states that the bond is able to drain (condition represented by 

 1 CB R   ) but it remains filled with water because its two connected sites are 
saturated (condition represented by 2

SDL ). Then, this second condition can be 
expressed as   21 C SDB R L   . Therefore, if BDL  represents the probability for a 
bond to be saturated, its value is represented by the addition of these two 
conditions as they are complementary, resulting in: 

    21BD C C SDL B R B R L     … (4.9) 

And by substituting Equation (4.9) into (4.8), it becomes: 

              1 1 1
C

s
SD C C C C SD C C SD CL S R S R B R B R L S R S R F R                   … (4.10) 

Notice that the exponent 2 in Equation (4.9) has been reduced to 1 in Equation 
(4.10) because this last equation represents the probability of a cavity to be 
saturated and therefore, its C concurrent bonds are only linked to an additional 
cavity (blank cavities in Fig. 2(a)). 
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Also notice that in this case the reduction factor for the term  CS R  is unity, 
meaning that in spite of the size of adjacent elements, all cavities whose size is 
smaller than the critical size remain saturated at this stage. In contrast, those 
cavities larger or equal to the critical size have a proportion of 

    1
C

s
SD C C SDF B R B R L      saturated elements (see Fig. 1(b)). 

Furthermore, note that the element  1 C SDS R F    involves the product 

   1 1C CS R B R        . This product is performed numerically in the model by 
discretizing the size distributions of cavities and bonds in the form 

     1 1C CS R B R          . Because the constructive principle establishes 
that two adjacent bonds should not intersect each other then, all products where 
the size of bonds divided by a factor 2  (considering that the two adjacent bonds 
have the same size) is larger than the size of cavities, are discarded. This 
consideration has to be applied to all factors involving the product between the 
size distribution of cavities and bonds. 

On the other hand, by substituting Equations (4.8) in (4.9) it results in: 

            
2

11 1 1C s
BD C C C BD C C BD CL B R B R S R L B R B R F R                  … (4.11) 

Notice that the exponent C in Equation (4.8) has been reduced to C-1 in Equation 
(4.11) because this last equation represents the probability of a bond to be 
saturated and therefore, the sites connected to this bond only have C-1 additional 
bonds that require to be liquid filled (bonds in white in Fig. 2(b)). Also notice that 
the product    1 C CB R S R    has been removed from Equation (4.11). This is 
so because it involves the product of bonds of larger size (  1 CB R ) than the 
size of sites (  CS R ), as it can be verified in Fig. 1(b). And, because the 
constructive principle states that sites must be larger than the bonds they are 
connected to, this product becomes null. Finally, it can be verified that Equations 
(4.10) and (4.14) are consistent because SDL  as well as BDL  become zero and one 
when both  CB R  and  CS R  reach these same values. 

With the above equations it is possible to determine the volume of bonds and sites 
that remain saturated during a drying process when the critical radius reaches the 
value RC, as shown below: 
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       
0

C

C

R
s s

SD C SR SD C SR
R R R

V R V R F R V R


 

    

       
0

C

C

R
s s

BD C BR BD C BR
R R R

V R V R F R V R


 

    

These equations indicate that during a drying process all pores smaller than the 
critical size remain saturated as suction is not large enough to dry them whereas 
those bonds and sites larger or equal to the critical size have a proportion of ܨ஻஽

௦  
and ܨௌ஽

௦  of saturated elements, respectively (see Fig. 1(b)). 

Accordingly, the degree of saturation of a sample subject to drying (SwD (RC)) is 
given by the relationship: 

     s s
SD C BD C

wD C
S B

V R V R
S R

V V





… (4.12) 

And because the value of RC depends on suction (Equation (3.2)), then it is possible 
to plot the drying SWRC in the axes of degree of saturation vs. suction. 

The degree of saturation given by Equations (4.12) and (4.7) varies from 1 to 0, 
however real soils subject to wetting-drying cycles never reach these values. 
Because of this, these equations are affected by two reduction factors: one 
representing the maximum and the other the residual degree of saturation of the 
soil as explained before. 

It can be verified that these equations obtained by means of the basic unit concept 
are the same as those derived from a purely analytical procedure [59], although in 
this case they have been obtained in a simpler and more rational way. In addition, 
this procedure allows introducing the solid phase into the model as shown below. 

4.5. SATURATED AND DRY VOLUMES 

Once the volumes of cavities and bonds filled with water have been defined, it is 
possible to determine the saturated and the dry volumes during a wetting or drying 
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process. For this purpose it is convenient to consider the basic solid unit depicted 
in Fig. 3. It represents the bi-dimensional case where a solid is encircled by four 
cavities and four bonds. These elements are called the surrounding pores and are 
shown in gray tones. In addition to these elements there are the external elements 
(shown in white) consisting in eight bonds and eight cavities. To these elements 
follow the farther external sites and bonds (not shown in the figure). Table 1 
shows the number of surrounding, external and farther external sites and bonds in 
a bi- and tri-dimensional network. It also shows the equations defining the number 
of elements for each case. These equations are used to determine the probability 
of surrounding pores to be saturated or dry. 

Consider that a soil sample undergoes a wetting process. Initially all pores are dry 
and suction is very large. Then, suction reduces by steps and the smallest pores 
are the first to saturate. By inspecting Fig. 3 it can be established that all pores 
surrounding a solid saturate when the following two conditions are fulfilled: a) all 
bonds and cavities surrounding the solid are smaller than the critical size, i.e., they 
can be intruded by water and, b) simultaneously at least one external bond is 
already saturated and connected to the bulk of water. 

 

Figure 3: Basic unit for solids. 

Solid Solid 
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Table 1: Number of surrounding, external and farther external elements in a basic solid unit 

Type Element Bi-dimensional Tri-dimensional Equation 

Surrounding 

 

Cavities 4 8 2(C-2) 

Bonds 4 12 4(C-3) 

External Cavities 8 24 C(C-2) 

Bonds 8 24 C(C-2) 

Farther 

external 

Cavities 12 72 6(C-2)(C-3) 

Bonds 20 96 C(C-2)2+2(6-C) 

The first condition can be written as        2 2 4 3C C

C CS R B R
 

        where the 

exponents 2(C-2) and 4(C-3) represent the number of surrounding cavities and 
bonds, respectively (refer to Table 1). The second condition can be expressed as 

 
1

2
1 1

C C

BIL


     where the exponent C(C-2) represents the number of external 

bonds (see Table 1) and 
1BIL  represents the probability of an external bond to be 

liquid filled. When all the surrounding pores of a solid are saturated, they form a 
saturated unit. Therefore, the probability of having a saturated unit at wetting ( sIL ) 

results from the product of the two aforementioned conditions (as they must be 
fulfilled simultaneously), in the form: 

          1

22 2 4 3
1 1

C CC C

sI C C BIL S R B R L
              … (4.13) 

Parameter 
1BIL  can be obtained from Equations (4.3) and (4.4) but with different 

exponents as the number of connected elements in this case change. For example, 
exponent C in Equation (4.4), representing the number of bonds connected to a 

single cavity in the basic cavity unit, transforms into 
   

 

2
2 2 6

2

C C C

C C

  


 which 

represents the number of farther external bonds connected to a single external 
cavity. This value is obtained by dividing the corresponding equations indicated 
in Table 1. Also, exponent 2 in Equation (4.6) transforms into 1 as all external 
bonds are connected to a single external site (refer to Table 1). Therefore, the 
expression for 

1BIL  results in: 
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   
 

 

2

1 1

( 2) 2 6

21 1
C C C

C C
BI C C BIL B R S R L

  


 
       

 

A similar procedure can be applied to determine the probability that a solid is 
completely surrounded by pores filled with gas and thus appertains to the dry 
fraction. Consider again the basic unit shown in Fig. 3. By inspecting this figure it 
can be concluded that all pores (cavities and bonds) around a solid remain dry as 
long as all surrounding cavities keep dry. Therefore, if sIG  represents the 
probability of a solid to be surrounded by pores filled with gas and, SIG  is the 
probability of a cavity to be filled with gas, the above condition writes: 

     
1

2 22 2 1
CC

sI SI SIG G L
   … (4.14) 

where the exponent 2(C-2) represents the number of surrounding cavities and 
1SIL  

represents the probability of a surrounding site to be liquid filled. The value of 
parameter 

1SIL  can be obtained from a relationship similar to Equation (4.5) 
except that exponent C is substituted by C/2 which represents the number of 
external bonds connected to a single surrounding site, according to Table 1. By 
doing this substitution, Equation (4.5) transforms into: 

    1 1

/2
1 1

C

SI C C SIL S R B R L      

By solving this equation, the value of sIG can be obtained from Equation (4.14). 

Consider now a drying process. Initially all pores are saturated and suction is 
equal to zero. Then, suction increases by steps and the largest pores start to dry. 
By inspecting Fig. 3 it can be concluded that all surrounding bonds remain 
saturated as long as all surrounding sites also do so. Therefore, the probability that 
all pores surrounding a solid are saturated during a drying process ( sDL ) is equal 
to the probability that all surrounding cavities remain saturated: 

 
1

2 2c
sD SD

L L  … (4.15) 



The Probabilistic Porous-Solid Model The Use of Effective Stresses in Unsaturated Soils   67 

where the exponent  2 2C   is the number of sites surrounding a solid and 
1SD

L  
represents the probability of surrounding sites to be liquid filled during a drying 
process. The relationship to determine 

1SD
L  is similar to Equation (4.10) except 

that exponent C transforms into C/2 which represents the number of external 
bonds connected to a single surrounding site according to Table 1. Therefore, by 
doing this substitution, Equation (4.10) transforms into: 

        
11

/2
1 1

C

C C C C SDSD
L S R S R B R B R L           … (4.16) 

By solving Equation (4.16) it is possible to obtain the value of sDL  from Equation 
(4.15). 

Moreover, the conditions required for all surrounding pores of a solid to dry 
during a drying process are the following: a) all surrounding cavities and bonds 
must be able to dry and b) at least one external bond should already be dry and 
connected to the bulk of gas. The first condition writes 

       2 2 4 3
1 1

C C

C CS R B R
 

        . The second condition can be expressed as 

     
1 1

2 21 1 1
C C C C

BD BDG L
      where 

1BDG  and 
1BDL  represent the probability of 

an external bond to be filled with gas and liquid, respectively. Then, if sDG  

represents the probability of having a dry solid unit during a drying process, its 
value is given by the product of the two aforementioned conditions as they must 
happen simultaneously: 

          1

2 2 4 3 21 1 1
C C C C

sD C C BDG S R B R L
            … (4.17) 

The value of 
1BDL can be obtained from the combination of Equations (4.8) and 

(4.9) but with different exponents according to the number of connected elements. 
According to Table 1, exponent C in Equation (4.8) transforms into 

   
 

2
2 2 6

2

C C C

C C

  


 which represent the number of farther external bonds 

connected to a single external cavity while exponent 2 in Equation (4.9) 
transforms into 1 because it represents the number of external bonds connected to 
a single external cavity (refer to Table 1). By combining the resulting equations, it 
becomes: 
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     
   

 

2

1 1

2 2 6

21 1
C C C

C C
BD C C C BDL B R B R S R L

  


            
  

 

By solving the relationship above, the value of sDG  can be obtained with Equation 
(4.17). 

With these relationships it is now possible to define the distribution of saturated 
cavities and bonds as a function of their size. For example, in the case of sites, 
Equation (4.13) can be rewritten in the following form: 

              
1

22 5 4 3

0
1 1

CRC CC C s s
sI C C C BI SI C SI RSL S R S R B R L F S R F V R dR

           

where s
SIF  represents the saturation factor for cavities in a solid unit. Then, the 

volume of saturated cavities of size R  is represented by: 

 s s
S SI S RSdV F V V R dR  

And the total volume of saturated cavities ( s
SV ) is: 

   
0

CR
s s s

S SI S RS SI C S sI SV F V V R dR F S R V L V     

In the same way the distribution of the volume of saturated bonds s
BV as a function of 

their size can be obtained. In that case, the saturation factor for the relative volume 
of bonds  s

BIF  results from Equation (4.13) rewritten in the following form: 

            
1

24 13 2 2
1 1

C CC C s
sI C C C BI BI CL B R B R S R L F B R

         

Then, the volume of saturated bonds of size R  is given by 

 s s
B BI B RBdV F V V R dR  and, the total volume of saturated bonds ( s

BV ) is: 

   
0

CR
s s s

B BI B RB BI C B sI BV F V V R dR F B R V L V     
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Finally, because there is a correlation in sizes between cavities and solids as 
explained before, the volume of saturated solids ( s

sIV ) can be determined as 
s

sI sI sV L V   . Once the volume of saturated cavities, bonds and solids have been 
defined, it is possible to define the volume of the saturated fraction: 

s s ss
s S B sV V VV

f
V V

 
    

The same procedure can be applied to define the dry fraction of the soil. For 
example, in the case of a drying process, Equation (4.17) can be rewritten as: 

            
1

4 3 2 521 1 1 1 1
C CC C d

sD BD C C C SD CG L B R S R S R F S R
                     

 

where d
SDF  represents the dry factor for cavities in the solid unit during a drying 

process. Then, the volume of dry cavities of a certain size (  d
SdV R ) can be 

found by multiplying the dry factor d
SDF  by the volume of cavities of that specific 

size. Finally, the total volume of saturated cavities is obtained by the addition of 
all saturated cavities from size CR  to the maximum size Rmax, that is to say 

   
max max

C C

R R
d d d

S S SD S RS

R R

V dV R F V V R   . By applying the same procedure, the 

volume of dry bonds d
BV  can be obtained. Moreover, the volume of solids of the 

dry fraction is given by d
s sD sV G V    and finally, the dry fraction is: 

d d dd
d S B sV V VV

f
V V

 
    

Once sf  and df  have been established, it is possible to define the value of the 
unsaturated fraction uf  using Equation (2.12). Furthermore, the degree of 
saturation of the unsaturated fraction can be obtained by dividing the volume of 
water by the volume of voids both belonging to the unsaturated fraction. The 
volume of water of the unsaturated fraction is obtained by subtracting the volume 
of bonds and cavities belonging to the saturated fraction from the volume of pores 
filled with water. On the other hand, the volume of voids of the unsaturated 
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fraction can be obtained by subtracting the saturated and dry volumes of bonds 
and cavities from the total volume of voids, that is to say: 

u s s s
u w w w w S B
w u s d s s d d

v v v v v S B S B

V V V V V V
S

V V V V V V V V V

  
  

     
 

Once parameters sf , uf  and u
wS  have been established, it is possible to 

determine the mean effective stress (Equation (2.14)) and the shear strength 
(Equation (2.18)) of a soil subject to any value of suction during a wetting or 
drying path. 

In principle, the parameters required by the porous-solid model are the PSD and 
the GSD, the voids ratio, the connectivity and a shape parameter for the fine 
fraction. All these parameters are discussed below. 

When the PSD is obtained from porosimetry tests, it is possible to discriminate 
the volume of mesopores and macropores because usually porosimetry tests 
performed on soils show a bimodal distribution: the one with smaller sizes 
corresponds to the mesopores and the other with larger sizes corresponds to the 
macropores [45]. However, these tests do not permit the determination of the size 
distribution of bonds mainly because the volume of these elements is negligible 
compared to that of cavities. Therefore, in order to define the size distribution for 
bonds, use can be made of two properties of SWRCs: the first one establishes that 
there is a unique relationship between the PSD and the SWRCs [60]. The second 
is that the drying branch depends mainly on the size distribution of bonds while 
the wetting branch is dependent mainly on the size distribution of cavities [28]. In 
this way, by fitting the numerical drying curve with the experimental results, it is 
possible to define the size distribution for bonds. This process begins by 
proposing a size distribution for these elements while the size distribution for 
cavities is obtained from a porosimetry test. Then the numerical drying SWRC is 
compared with the experimental one and the size distribution for bonds is 
subsequently adjusted until the best fit is obtained. If porosimetry data is not 
available, then both SWRCs are required and the adjusting process includes the 
size distributions for macropores, mesopores and bonds. The PSD and GSD of the 
material can be introduced directly into the model in the form of tables or they can 
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be adjusted using proper mathematical functions. Presently, the model uses single, 
double or triple logarithmic normal distributions to adjust the experimental data. 
These functions have proven to be sufficiently flexible in order to accurately 
simulate the pore and GSDs for different types of soils. Direct porosimetry tests 
such as image analysis of micrographs or indirect methods such as Mercury 
Intrusion Porosimetry (MIP) or nitrogen adsorption can be used to determine the 
PSD of a soil. 

The connectivity of a two- and a three-dimensional network is 4 and 6, 

respectively. However, direct determination techniques indicate that real soils 

show connectivity values between 2 and 6 as mention before [55]. In the case of 

the probabilistic porous-solid model, the connectivity (which in fact represents the 

value of the mean connectivity of the sample) can take integer or fractional values 

to better reflect the structural characteristics of a particular soil. 

Finally, as the size distribution of solids plays a main role in the determination of 

the volume of saturated solids, it is important to take into account the hypothesis 

considered to obtain this distribution. For example, one of the most widely used 

methods to obtain the GSD of fine soils is the hydrometer test. However, this 

method assumes that solid particles have rounded shapes. This hypothesis may be 

adequate for the grains of sands but not for fine particles and especially not for 

clays which in general show flat shapes. For this reason, a shape factor ൫ ௙ܵ൯ needs 

to be introduced into the porous-solid model, as explained before. This parameter 

adjusts the real volume of fine material ensuring that the numerical voids ratio 

corresponds to the experimental one. The shape factor comes close to unity for 

rounded sands but reduces drastically in the case of plastic clays. 

4.6. SCANNING CURVES 

When an inversion during a wetting or drying process takes place, the resulting 

paths are called scanning curves. The mechanisms of wetting or drying for sites 

and bonds in this case are exactly the same as those described for the boundary 

curves, except that the initial conditions change, as it is explained below. 
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4.6.1. Drying-Wetting Cycle 

Fig. 1(b) shows the proportion of pores filled with gas at a certain stage of a 

drying process. In the case of a drying-wetting cycle, only those bonds and sites 

already invaded by gas during the drying stage ( BDRG  and SDRG , respectively) can 

be replenished with water, and therefore the values of SIL  and BIL  in Equations 

(4.5) and (4.6) should be substituted by the terms  SDI SDR SDRL L G  and 

 BDI BDR BDRL L G , where SDIL  and BDIL  represent the probability for a site or a 

bond, respectively, to be liquid-filled after an inversion in drying and SDRL  and 

BDRL  represent the probability for a site and a bond to be liquid-filled at the 

moment of inversion, respectively. Additionally, the probability functions  CS R  

and  CB R , should also be scaled according to the following equations: 

     
       

 
,

1 1
C R C C R C

A C A C
R C R C

S R S R B R B R
S R B R

S R B R

 
 

 
 

where  A CS R  and  A CB R  are the adjusted probability functions for sites and 
bonds, respectively. Finally, knowing that 1BDR BDRG L   and 1SDR SDRG L   
Equations (4.5) and (4.6) transform into: 

     

     

1 1 1
1

1

C

SDI SDR
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s
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  
         

  

… (4.18) 

     

     
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L
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                          

  

… (4.19) 

The above equations ensure that the adjusted probability functions for sites and 
bonds (  A CS R  and  A CB R ) continue varying from one to zero and thus the 
equations describing BDIL  and SDIL  remain auto-consistent. 
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With the above equations it is possible to determine the volume of bonds and sites 
that remain saturated once the inversion in the wetting process initiates: 

         
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s sSDR
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R R RR

L
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B R


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     
   

where ܴோ and ܴ஼ represent the critical radius at the moment of inversion and the 
critical radius during the wetting stage, respectively. Parameters ܨௌ஽ூ

௦ ሺܴ஼ሻ and 
஻஽ூܨ
௦ ሺܴ஼ሻ can be obtained from Equations (4.18) and (4.19) in the form: 
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        

 

The degree of saturation of the system is obtained as expressed in Equation (4.7), 
except that  s

SI cV R  and  s
BI cV R  are substituted by  s

SDI cV R  and  s
BDI cV R , 

respectively. 

4.6.2. Wetting-Drying Cycle 

When an inversion occurs at a certain stage of a wetting path, the distribution of sites 
and bonds invaded by water is, approximately, that shown in Fig. 1(a). Therefore, 
during the drying stage, only those sites and bonds already invaded by fluid during 
the wetting phase are able to drain. Consequently, the limits of the probability for a 
site or a bond to dry during the drying process goes from their value at the moment 
of inversion ( SIRL  and BIRL , respectively) to zero for a completely dry soil. 
Therefore, the values of BDL  and SDL  in Equations (4.9) and (4.10), should be scaled 
in the form of BID BIRL L  and SID SIRL L , respectively, where BIDL  and SIDL  represent 
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the probability for a bond and a site to be liquid-filled at drying after being subjected 
to wetting, respectively. The probability functions  CS R  and  CB R , should also 
be scaled according to the following equations: 

   
     

 
,C C

A C A C
R C R C

S R B R
S R B R

S R B R
   

where  A CS R  and  A CB R  represent the adjusted values of the probability 
functions for sites (  CS R ) and bonds (  CB R ), while  R CS R  and  R CB R  
represent the probability values for sites and bonds at the moment of inversion, 
respectively. 

With these considerations, Equations (4.10) and (4.11) transform into: 

           

    
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s
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          

    
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1

C
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s
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     

  

… (4.21) 

The above equations ensure that the adjusted probability functions for sites  
(  A CS R ) and bonds (  A CB R ) remain varying from one to zero, and thus the 
equations defining BIDL  and SIDL  remain auto-consistent. In this form, when an 
inversion takes place, the sign of the increment of the probability functions 

 CS R  or  CB R  change, and they continue increasing or reducing until a new 
inversion takes place. 

With the above equations it is possible to determine the volume of bonds and sites 
that remain saturated once the wetting of the sample stops and the drying process 
initiates: 
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where ܴோ and ܴ஼ represent the critical radius at the moment of inversion and the 
critical radius during the drying stage, respectively. Parameters ܨௌூ஽

௦  and ܨ஻ூ஽
௦  can 

be obtained from Equations (4.20) and (4.21) in the form: 

        1
C

s
SID C A C A C SID SIRF R B R B R L L      

஻ூ஽ܨ
௦ ሺܴ஼ሻ ൌ ሼሾ1 െ ஺ܵሺܴ஼ሻሿሺܮ஻ூ஽ ⁄஻ூோܮ ሻ஼ିଵሽଶ 

The degree of saturation of the system is obtained as expressed in Equation (4.12), 
except that  s

SD CV R  and  s
BD CV R  are substituted by  s

SID CV R  and  s
BID CV R , 

respectively. 

The above equations can be used to simulate the secondary boundary curves as 
well as the scanning curves when they are plotted either on the axes of equivalent 
volumetric water content or degree of saturation versus suction. The equivalent 
volumetric water content  , was defined by van Genuchten [61] in the form 

   /r s r       , where r  and s  represent the residual and saturated 
volumetric water content, respectively, and   is the current volumetric water 
content of the sample. At its present stage, the probabilistic porous-solid model 
does not consider the collapse of pores experienced by the material during loading 
or drying [45]. 

With the above equations, a very simple computer program can be created to 
produce results in seconds. This model offers important advantages when 
compared with computational network models. Usually these last models require 
heavy programs that are difficult to manipulate and require several hours to 
produce results for large networks. Another advantage of the probabilistic model 
is that all pore and solid sizes are well-represented, no matter if their size 
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distribution curves involve several orders of magnitude, which is certainly not the 
case for computational network models. This has important consequences 
regarding the influence of the size of the network on the results especially for 
materials with large size distributions. While the probabilistic model considers an 
infinite network, computational models require defining the size of the network 
and it is possible that the largest network that a PC can handle may not be 
sufficient to nullify the size effect. Additionally the computer code of the 
probabilistic model can be easily adapted to other computer programs to develop 
a general constitutive model for soils. 

4.7. VALIDATION OF THE PROBABILISTIC MODEL 

The probabilistic model can be evaluated by comparing its results with those 
produced by a computational network model using a simple normal distribution 
with low standard deviation for the sizes of sites and bonds. Fig. 4 shows this 
comparison for the following data RS = 1.0 m, ߜௌ  = 2.5, RB = 0.2 m and ߜ஻ = 
2.0, where RS and RB represent the mean size for sites an bonds whereas ߜௌ and ߜ஻ 
are the standard deviation for sites and bonds, respectively. The connectivity in 
the probabilistic model was taken as four (bi-dimensional case) and the size of the 
network in the computational network model was 500 x 500. Notice that the 
results produced by both models regarding the SWRC are practically the same. 
 

 

Figure 4: Results comparison between the computational and probabilistic model. 
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The most important difference is that the drying curve generated by the 
probabilistic model is slightly displaced to the left when compared to that 
produced by the computational model. Also, the wetting curve of the probabilistic 
model shows a more gradual variation close to saturation than that of the 
computational model. This last detail is linked to the small number of pores of the 
largest size that results during the determination of the number of pores of each 
size in the computational network model. 

To validate the porous model described above, the experimental results reported 
by Brown [62] and Enustun and Enuysal [63] are used. Brown [62] reported the 
main hysteresis loop and some scanning curves for a sample of Vycor glass using 
gas xenon in isothermal conditions. His experimental results are reported in Fig. 5 
in the axes of equivalent volumetric water content versus suction. Additionally, 
Enustun and Enuysal [63] determined the size distribution of this same material 
by filling the pores with metal, leaching away the glass and imaging the residue in 
an electron microscope. Their results are presented in Fig. 6 in the axes of 
frequency vs. pore radius. 

Fig. 5 also shows the comparison between numerical and experimental results for 
the main wetting and drying curves as well as for various scanning curves at 
wetting and drying. In this case, the main numerical adsorption and desorption 
curves were fitted with the experimental results by means of the iterative PSD 
method earlier described. For this case a normal distribution for mesopores and 
bonds was sufficient to properly describe the wetting and drying SWRC. Given 
the uniform porosity of the Vycor glass, the use of macropores to simulate the 
SWRC was not necessary. The size distribution parameters used to elaborate these 
figures were: SR  0.0020m, S  0.001m, BR 0.0013 m, B   0.0003 m. 
The numerical scanning curves were obtained by defining the water content at 
which the inversion from drying to wetting takes place. A good general agreement 
between experimental and numerical results can be observed. 

Fig. 6 also presents the numerical size distribution obtained from the iterative 
procedure to obtain the main drying and wetting curves shown in Fig. 5. It can be 
observed that the numerical size distribution for sites shows approximately the  
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(a) 

 

(b) 

Figure 5: Numerical and experimental main retention curves and scanning curves for (a) drying-
wetting and (b) wetting-drying cycles. Experimental results by Brown [62]. 

same shape than the experimental data. However, a horizontal displacement of 
approximately 1nm is observed between both curves. A similar result was 
obtained by Mason [64] when he applied the percolation theory to reproduce the 
main hysteresis loops of the Vycor glass. Mason [64] attributes this difference to 
the reduction in the thickness of the adsorbed water layer when casting the metal 
into the pores. In any case, this difference is rather small and shows the degree of 
precision that the model can reach when simulating wetting-drying processes. 
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Figure 6: Numerical and experimental size distribution for cavities (experimental results after 
Enustun and Enuysal, [63]). 

4.8. PARAMETRIC ANALYSIS 

Figs. 7-9 show the influence of the porosimetry on the wetting and drying SWRC. 
For simplicity, a logarithmic normal distribution for bonds and sites has been 
used. In a logarithmic normal distribution the only parameters required are the 
mean size ( R ) and the standard deviation ( ) for each element. In addition, it is 
necessary to define the length of the bonds. 

 

Figure 7: Model results with SR =.03 m, BR =.003 m, S =3.5 and B =3.5. 
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The wetting and drying curves in Fig. 7 were obtained using the following 
parameters: SR =.03m, BR =.003m, S =3.5 and B =3.5. In Fig. 8 the following 
parameters were used: SR =.03m, BR =.003m, S =2.5 and B =2.5. Finally, Fig. 
9 was obtained using SR =.1m. BR =.03m, S =3.5 and B =3.5. The considered 
length of the bonds was 0.001m. 

 

Figure 8: Model results with SR =.03m, BR =.003m, S =2.5 and B =2.5. 

When these figures are compared, the influence of each parameter can be 
determined. For example, when comparing Figs. 7 and 8, the effect of the 
standard deviation on bonds and sites can be observed. When comparing Figs. 7 
and 9, the effect of the mean size on bonds and sites is observed and finally when 
comparing Figs. 8 and 9, the combined effect of mean size and standard deviation 
is noticed. According to these comparisons, it can be concluded that the standard 
deviation of mesopores ( S ) and bonds  B  defines the extension of the curves 
on the axis of suction. This is so because this parameter defines the range of 
values of the pores for each element. Then, large standard deviations represent 
well graded materials with many different sizes of pores and the SWRC extends 
along the suction axis. In contrast, small standard deviations represent poorly 
graded materials with uniform pore sizes and therefore, the SWRC appears more 
vertical. 

On the other hand, the mean size of sites ( SR ) and bonds ( BR ) defines the 
position of the wetting and drying curves in the axis of suction, respectively. For 
example, small mean sizes indicate the presence of fine soils and the curves are 
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located at the zone of large suctions. On the contrary, large mean values indicate 
the presence of granular soils and the curves appear in the zone of small suctions. 
Also, as pointed out before, the parameters for sites affect mainly the wetting 
curve while those for bonds affect the drying curve. Finally, when the mean 
values for sites and bonds approach each other, the curves also get closer and vice 
versa. The length of bonds modifies the volume occupied by these elements but 
has no major influence on these curves. 

Figure 9: Model results with SR =.1m, BR =.03m, S =3.5 and B =3.5. 
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Eduardo Rojas 

CHAPTER 5 

Applications of the Porous-Solid Model 

Abstract: In the previous chapter, a probabilistic porous-solid model adequate for the 
simulation of soil-water retention curves of soils was developed. In this chapter, the 
model is used to interpret more realistically the results of mercury intrusion porosimetry 
experiments. Moreover, it is used to obtain the pore size distribution of different soils 
while using both boundary branches of the retention curve as data. The numerical and 
experimental comparisons for different soils show that the model approximately 
reproduces the pore size distribution obtained from mercury intrusion porosimetry tests. 
Finally, the procedure to adjust the numerical and experimental soil-water retention 
curves in order to obtain the pore size distribution of soils is presented herein. 

Keywords: Mercury intrusion porosimetry tests, scanning electron micrographs, 
pore size distribution, grain size distribution, superficial tension, contact angle, 
soil-water retention curve, critical radius, relative volume, macropores, 
mesopores, micropores, hydro-mechanical coupling, soil mixtures, logarithmic 
normal distribution, mean size, standard deviation. 

5.1. INTRODUCTION 

One of the most popular methods to obtain the PSD of soils is Mercury Intrusion 
Porosimetry (MIP). MIP tests are made in pressure chambers filled with mercury 
(which is a non-wetting fluid) where a moisture-free soil sample is immersed. 
Then, the pressure in the chamber is progressively increased while the volume of 
intruded mercury in the pores of soil is recorded. The diameter of the intruded 
pores at certain pressure is obtained from the Laplace equation (Equation (3.2)), 
via the appropriate parameters of surface tension for the air-mercury interface and 
the contact angle between mercury and solid particles. Finally, a graph of the 
relative intruded volume vs. the size of the pores is generated. With these results, 
the sizes of both macropores and mesopores can be established. However, the 
unrealistic hypotheses made to determine the pore sizes, together with the 
impossibility of measuring the whole range of sizes [46], as well as doubts related 
to the deleterious effect of high mercury pressures on the size of pores for loose 
soils [65], and some inconsistencies on the application of data to correctly 
reproduce the SWRCs [66], require these results to be taken with caution and to 
be considered only as an approximation to the real PSD of the material. 

Send Orders of Reprints at reprints@benthamscience.net

© 2013 The Author(s). Published by Bentham Science Publishers
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5.2. MERCURY INTRUSION POROSIMETRY TESTS 

Recently, the use of the MIP test to ascertain the PSD of soils has become quite 
popular in unsaturated soil mechanics, primarily because of its simplicity. To 
perform this test, a sample of around 1cm3 is introduced into a cell filled with 
mercury. The sample has been previously dried by means of different techniques, 
being two of them the most frequently used: oven-drying and freeze-drying. In 
general, the freeze-drying method is preferred as it is associated with a smaller 
affectation to the original structure of the soil due to the rapid rate of freezing. 
Once the sample has been placed in the cell, the pressure of mercury is increased 
gradually and the volume of intruding mercury is measured. The radii of the 
intruded pores are obtained from the Laplace equation involving the superficial 
tension of mercury and the contact angle between mercury and soil. The main 
hypothesis employed to interpret these results is to assume that only those pores 
the size of the critical radius (determined from the Laplace equation for the 
current mercury pressure) are intruded at each increment of the mercury pressure. 
Then, a graph showing the relative volume of pores (in cm3 per gram) for each 
pore size is produced. More details of the equipment and procedure required to 
obtain the PSD of soils by MIP is reported by Simms and Yanful [45]. 

However, the hypothesis made to interpret MIP tests is clearly unrealistic. It is 
equivalent to supposing that only equally sized pores are interconnected, while 
there is no interconnection between pores of different sizes. In fact, it has been 
acknowledged that the results of MIP tests exaggerate the frequency of small 
pores while underestimating that of large pores [67]. This is a result of the 
intrusion of mercury in the bonds, matching that of the cavity connected to this 
bond. This is explained by the fact that larger pores are the first ones to be 
intruded when mercury pressure increases. 

Considering a network porous model as the one described in Chapter 3, it is 
possible to give a better interpretation of the results of MIP tests. The invasion of 
mercury (which is a non wetting fluid) is similar to a drying process where pores 
are invaded by air (which is also a non wetting fluid), forcing the water to drain 
out of the sample. In both cases, the largest pores are the first ones to be filled in 
with fluid as indicated in Fig. 1. 
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Figure 1: Pores invaded by mercury (shaded zone) during a MIP test. 

When mercury pressure increases only a fraction of pores with an equal or larger 
size regarding the critical radius will saturate while the rest will remain blocked by 
smaller bonds. This occurs because of the interconnection of pores of all sizes. Some 
larger pores saturate during this increase of mercury pressure because at least one of 
their interconnected bonds belongs to those that saturate with this increment. 

The mechanism of mercury invasion is sketched in Fig. 1. Considering that the 
critical radius reduces from 1CR  to 2CR  due to the increase in mercury pressure, the 
blank zone in the figure represents the volume of pores that still have not yet been 
invaded by mercury. The single shadow zone represents the volume of pores already 
invaded by mercury before the new pressure increment. Finally, the double shadow 
zone represents the volume of pores occupied during the new pressure increment. 

For MIP tests, the appropriate values of the contact angle and surface tension have 
to be taken into consideration. According to Equation (3.2), the ratio between the 
suctions in a pore filled with water ( ws ) and with mercury  ms  is given by the 
relation: 
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Therefore, the porous model can be used to simulate MIP tests if considering that 
the sample is subjected to a drying process, in which the air volume represents the 
intruded mercury and the critical radius is computed by means of Equation (3.2). 

As stated previously, the employment of MIP tests on plastic soil has been 
questioned [65], and for that reason the evaluation of the capabilities of the porous 
model to interpret MIP tests has been carried out with respect to the results 
reported by Roels, Elsen, Cermeliet and Hens [68] on a rigid calcareous 
sedimentary rock from Savonnières, France. These authors reported the 
porosimetry study of this material by using two different techniques: image 
analysis and mercury intrusion. For the image analysis, they obtained a series of 
micrographs of a cross-section of the rock by means of a Scanning Electron 
Micrographs (SEM). Then, by applying the spherical pore segment model, the 
authors could define the relative volume for each pore. Fig. 2 shows the results 
from both tests, where a marked difference between these two techniques can be 
observed. It is worth noting that MIP tests may report pore sizes up to two orders 
of magnitude smaller than the image analysis technique. Similar results have been 
reported when comparing the MIP method with other techniques [67]. 

Fig. 3 shows the wetting and drying SWRC of the limestone obtained from a 
pressure membrane apparatus. In this case, the material is stiff enough to avoid 
appreciable volume changes during wetting-drying cycles and therefore its void 
ratio remains approximately constant, meaning that, the phenomenon of 
progressive collapse of pores is not required in these simulations. Hence, it has 
been possible to relate the water content of the sample with its degree of 
saturation. On the other hand, it has been assumed that the PSD obtained from the 
image analysis technique reflects the real PSD of the rock and consequently was 
adopted as the distribution of cavities (macropores and mesopores) existing in the 
porous model. Subsequently, a size distribution for bonds was proposed and the 
SWRC in wetting and drying were simulated and compared with the experimental 
results. The proposed distribution for bonds was then modified until the best fit 
for both curves was obtained. During the fitting process it was considered that the 
size distribution of bonds affects mainly the drying curve while it shows a minor 
effect on the wetting curve, as aforementioned. In contrast, the size distribution of 
sites affects mainly the wetting curve while it shows a minor effect on the drying 
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curve. On a later section of this chapter, the procedure to fit numerical with 
experimental SWRCs is explained. 

 

Figure 2: Porosimetry results by MIP and SEM (data from Roels, Elsen, Cermeliet and Hens [68]). 

The best fit for both curves is shown in Fig. 4. To reach this result a triple 
logarithmic normal size distribution was adopted for bonds. The pore size density 
function for sites and bonds is shown in Fig. 5. The data for the adopted 
distribution for bonds is: 1BR = 0.007m, 2BR = 0.05m, 3BR = 1.0m, 1B = 4, 2B
= 5.3, 3B = 3, Pvf1=.025, Pvf2=.0015. 

Once the size distribution for bonds has been established, it is possible to simulate 
MIP tests using the considerations previously mentioned. The parameters required 
to simulate this test were reported by Roels, Elsen, Cermeliet, and Hens [68] 
which include: swT = 0.073 N/m, smT = 0.485 N/m w = 0 and m = 140

o
. According 

to these parameters and Equation (5.1), the equivalent water suction for this test is 
0.2w ms s . With this value, Fig. 6 was obtained. This figure shows the 

comparison between the experimental results of the MIP test with those obtained 
from the porous model. This figure also shows the numerical PSD resulting from 
the density functions shown in Fig. 5. Even if some differences between the 
numerical and experimental MIP curves subsist, especially those related to the 
relative volume of small pores, the shape of both curves is very similar. It can also 
be verified that the size distribution of pores obtained from the simulation of the 
MIP test reduces by two orders of magnitude the original PSD of the soil as it is 
observed in the experimental results shown in Fig. 2. 
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Figure 3: Wetting and drying SWRC (data from Roels, Elsen, Cermeliet and Hens [68]). 

 

Figure 4: Numerical and experimental wetting and drying SWRC (experimental data from Roels, 
Elsen, Cermeliet and Hens [68]). 

 

Figure 5: Frequency function adopted for bonds and comparison with sites. 
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This result has serious implications regarding some procedures recently developed 
to define the SWRC or the hydraulic conductivity of unsaturated soils based on 
the PSD obtained from MIP tests. Finally, another important remark is that the 
PSD obtained from a single MIP test provides insufficient information to define 
the size distribution of the two different porous elements, namely the cavities and 
the bonds, of the model adopted herein. Therefore, additional information is 
needed. For example, the results of intrusion tests require to be complemented 
with retraction tests as is currently performed in the nitrogen adsorption-
desorption method. 

 

Figure 6: Numerical and experimental comparison for a MIP test on a Savonnières rock 
(experimental data from Roels, Elsen, Cermeliet and Hens [68]). 

5.3. SOIL-WATER RETENTION CURVES 

The SWRC is the relationship between suction and water content or degree of 
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phenomenon in these materials was identified. Evidence of the hydro-mechanical 
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unsaturated soils when identical samples are subjected to the same suction. This 
means that a sample subject to wetting shows different strength than one 
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for unsaturated soils involve the modeling of the SWRC to induce this hydro-
mechanical coupling [22, 24, 25]. Besides, recent developments in the design of 
pavements require using the SWRC [69]. Even the tensional strength of soils can 
be related to the SWRC [70]. 

Different methods and empirical relationships have been proposed to model the 
SWRC. Some of these equations use parameters related to the air entry value, the 
residual water content and the main slope of the curve [61, 71]. Other methods are 
based on the GSD in addition to other soil properties, and use a statistical 
correlation between soil data and water content [72-74]. The degree of confidence 
of these models depends largely on the quality and quantity of the data used for 
the statistical correlation. Other methods use the PSD which, in some cases, is 
estimated from the GSD [75-77]. Otherwise, it is directly obtained from 
porosimetry tests [78, 79]. As the SWRC depends on the PSD of the material 
then, the precision in the PSD measurements affects the results derived from these 
models. 

Likewise, different network models have been proposed to simulate the SWRC. For 
example, Androutsopoulos and Man [80] proposed a bidimensional square network 
model made of randomly distributed cylinders of different sizes. The Laplace 
equation was used to determine which pores can drain or saturate according to their 
size and current suction. Saturation or drainage starts at the borders and continues 
through the porous network in a quasi-static flow where suction monotonically 
reduces or increases. Considering a logarithmic normal distribution for the diameter 
of the cylindrical pores, these researchers were able to approximately reproduce the 
intrusion and retraction of mercury in a cobalt/molybdenum porous sample. 
However, the experimental PSD for this material was not reported and the 
differences with the numerical PSD used for the simulations rested unknown. 

Simms and Yanful [79] used a similar network model that included the pore 
shrinkage phenomenon due to suction increase. With this model they tried to 
reproduce the experimental SWRC of different soils using the PSD obtained from 
MIP tests. Nevertheless, the comparison between numerical and experimental 
SWRCs for different materials was not very successful [78]. Similar results were 
reported by Zhang and Li [81]. The main reason for these poor results lies on the 
main hypothesis made to interpret MIP tests as discussed before. 
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Zhang and Li [81] performed a series of tests on five different mixtures of 
completely decomposed granite with sizes varying from gravel to clay. These 
tests included the GSD, the PSD and the drying SWRC. The PSD was obtained 
from MIP tests. The SWRC was achieved using a pressure plate apparatus for 
suctions up to 0.5 MPa. In some cases this method was complemented with the 
psychrometer technique reaching suctions up to 50 MPa. The basic parameters for 
the five mixtures of soil are shown in Table 1. 

Table 1: Basic parameters for the five different soils 

Soil 
Type 

Max. Dry Dens. 
(g/cm3) 

Op. water 
Content (%) 

Clay 
(%) 

Silt 
(%) 

Sand 
(%) 

Gravel 
(%) 

ASTM D2487 

1 1.97 9 3.9 3.1 16.7 76.3 GP 

2 1.96 11 5.9 18.7 17.9 57.5 GW 

3 1.90 13 7.9 34.3 19.1 38.7 SP 

4 1.71 18 9.9 49.9 20.3 19.9 SW 

5 1.55 21 11.9 65.5 21.5 1.1 SM 

The SWRCs for all five soils are presented in Fig. 7. Notice that the more the 
proportion of coarse material of the soil increases, the more the SWRC displaces 
to lower degrees of saturation for the same suction. The only material that does 
not follow this tendency is the poorly graded sand (SP) which shows degrees of 
saturation similar to silty sand (SM). 

 

Figure 7: Experimental SWRCs for the five soils tested (data from Zhang and Li [81]). 

The numerical PSD was obtained by fitting the numerical with the experimental 
SWRC of each material. The procedure used to fit the numerical with the 
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experimental results is presented as an example in the next section of this chapter. 
The PSD resulting from this procedure is considered to be the porous-solid model 
PSD. Similarly, the GSD was obtained from the simulation of the cumulative 
finer by weight gradation of each soil employing a single, double or triple 
logarithmic normal distribution depending on the material. 

Once the SWRC was correctly reproduced, the resulting PSD of the soil was used 
to simulate a MIP test according to the principles outlined in the previous section 
of this chapter. Finally, the results of the simulated MIP tests were compared with 
the experimental results. 

Figs. 8(a)-12(a) show the simulation of the SWRC for GP, GW, SP, SW and SM 
soils from which the numerical PSD of each material was established. The 
parameters adopted for the PSD and the GSD for all soils are presented in Table 2. 

Table 2: Mean size and standard deviation for the normal distributions for sites, bonds and solids 
of the materials described in Table 1 

Soil  S1 S2 B1 B2 B3 Sol1 Sol2 Sol3 e0 Sf 

 

GP 

(m) 0.15 40 .04 25 0.0 7 320 0.0  

0.705 

 

.00015  2.5 2.5 5.0 3.0 0.0 3.0 3.0 0.0 

Pvf  1.5E-5  .008   3E-3  

 

GW 

(m) 0.15 15 .001 .005 0.0 0.4 700 0.0  

0.61 

 

0.061  2.5 2.5 1.5 3.0 0.0 3.6 2.5 0.0 

 Pvf  9E-6  .0005   3.3E-6    

 

SP 

(m) 0.15 10.0 .015 1.0 0.0 0.5 550 800  

0.62 

 

0.017  2.0 2.0 3.0 3.0 0.0 3.4 2.8 2.0 

Pvf  1.5E-4  6E-3   1.6E-6 1E-7 

 

SW 

(m) 0.3 90 .001 .02 18 0.2 100 2000  

0.63 

 

0.0385  2.5 2.5 3.0 3.0 3.0 4.0 2.5 2.0 

Pvf  3E-6  1E-2 1.5E-5  6E-6 4E-8 

 

SM 

(m) 0.3 1.6 .01 1.0 0.0 0.4 13.0 0.0  

1.02 

 

0.144  2.0 2.0 3.0 3.0 0.0 3.0 2.5 0.0 

Pvf  2E-2  3E-3   8E-4  

Notes:  = mean size, σ = standard deviation, S = sites (S), B = bonds, Sol = solids, sub-scripts from 1 to 3 indicate the 
three different logarithmic normal distributions, Pvf = Proportional volume factor, e0= initial voids ratio, Sf = shape factor. 
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(a) 

 

(b) 

 

(c) 

Figure 8: Numerical and experimental results for (a) the drying curve,(b) the PSD and (c) 
numerical PSD with experimental GSD for soil GP (experimental data by Zhang and Li [81]). 
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(a) 

 

(b) 

 

(c) 

Figure 9: Numerical and experimental results for (a) the drying curve, (b) PSD and (c) numerical 
PSD with experimental GSD for GW soil (experimental data by Zhang and Li [81]). 

0

0.2

0.4

0.6

0.8

1

0.0001 0.001 0.01 0.1 1 10

D
eg

re
e 

o
f 

sa
tu

ra
ti

o
n

Suction (MPa)

Numerical ExperimentalGW

0

0.05

0.1

0.15

0.001 0.01 0.1 1 10 100 1000 10000

R
el

at
iv

e 
vo

lu
m

e 

Radius (m)

MIP (num) MIP (exp) PSDGW

0

0.005

0.01

0.015

0.1 1 10 100 1000 10000 100000

R
el

at
iv

e 
vo

lu
m

e 
 

Radius (m)

Pores SolidsGW



94   The Use of Effective Stresses in Unsaturated Soils Eduardo Rojas 

 

(a) 

 

(b) 

 

(c) 

Figure 10: Numerical and experimental results for (a) the drying curve, (b) PSD and (c) numerical 
PSD with experimental GSD for SP soil (experimental data by Zhang and Li [81]). 
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(a) 

 

(b) 

 

(c) 

Figure 11: Numerical and experimental results for (a) the drying curve, (b) PSD and (c) numerical 
PSD with experimental GSD for SW soil (experimental data by Zhang and Li [81]). 
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(a) 

 

(b) 

 

(c) 

Figure 12: Numerical and experimental results for (a) the drying curve, (b) PSD and (c) numerical 
PSD with experimental GSD for SM soil (experimental data by Zhang and Li [81]). 
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As can be observed in Figs. 8(b)-12(b), the difference between the porous model 
PSD and that obtained from the simulation of the MIP test is about one order of 
magnitude. This difference explains the failure of those network models that intend 
to reproduce the SWRC directly from the PSD obtained from MIP tests, and this 
arises from the fact that SWRCs are simulated by using the network model while 
MIP tests are interpreted according to the capillary tubes bundle model. 

The experimental PSD matches with the numerical results for all soils (see Figs. 
8(b), 9(b), 11(b) and 12(b)) except for SP soil (Fig. 10(b)) whose experimental 
points are closer to the porous network PSD. This result is caused by the fact that 
the experimental SWRC obtained for this material is very close to that of SM soil 
(see Fig. 7), despite the fact that their experimental PSD are quite different 
(compare Figs. 10(b) and 12(b)). In other words, the experimental results for SP 
soil cannot be correctly reproduced by the model because they show some 
inconsistencies with respect to the other soils. 

It can also be observed in these figures that the numerical PSD of soils GP, GW, SW 
and SM -obtained from the simulation of MIP tests- consistently show slightly 
smaller pore sizes than those experimentally determined. This is also the case of the 
example presented in the previous section of this chapter. The differences in the value 
of the contact angle when water or mercury intrudes or retracts from pores ([82], 
[55]) may explain this result, as the advancing angle has been found to be 
significantly larger than the receding one. Instead the model considers the same value 
for both cases. In spite of this, it can be concluded that the probabilistic model is able 
to approximately define the PSD of the soil based on the SWRC or vice versa. 

It can also be noticed that all soils show a significant correlation between their 
numerical PSD and their GSD (see Figs. 8(c)-12(c)) as it was experimentally 
observed by Alonso et al. (2008) for different soils. This result explains why some 
methods based on the GSD of the material have had relative success in predicting 
the SWRC for soils (see for example [72, 75, 77]). 

5.4. OBTAINING THE PORE SIZE DISTRIBUTION 

The procedure to fit the numerical with the experimental SWRCs is shown in this 
section. At the end of this fitting process, the PSD of the soil is determined 
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because, as stated before, there is a one to one relationship between the PSD and 
the SWRCs of porous materials. 

The data published by Roels, Elsen, Cermeliet and Hens [68], used previously in 
the example presented in section 2 of this chapter, is also employed for this case. 
These researchers reported both the wetting and the drying SWRCs, the results of 
MIP tests and the PSD obtained from SEM analysis. For this instance, it is 
considered that the only available data are the main SWRCs of the soil. Therefore, 
numerical and experimental PSD are used here merely to show how they 
approach each other during the fitting process. 

The first step to adjust the numerical and the experimental SWRCs of a soil is to 
arbitrarily choose the initial values for the mean size and the standard deviation of 
pores. The larger pores (cavities) regulate the wetting curves while the smaller 
(bonds) regulate the drying curve. When the SWRC shows a development, where 
suction varies in several orders of magnitude or when the PSD shows two or three 
peaks, then a double or triple logarithmic normal distribution is required. Suppose 
that the drying SWRC has already been fitted using a triple logarithmic normal 
distribution. This distribution was chosen because the SWRCs show a 
development in the suction axis of several orders of magnitude. Usually both the 
wetting and the drying branches require the same order of size distribution (single, 
double or triple). In that sense, a triple logarithmic normal distribution is also 
proposed to fit the wetting curve. The results obtained with the initially proposed 
values for this distribution (Table 3) are shown in Fig. 13. Fig. 13(a) shows the 
comparison between the numerical and experimental SWRCs while Fig. 13(b) 
shows the proposed PSD compared with the SEM analysis as well as the 
numerical and experimental PSD obtained from a MIP test. 

Fig. 13(a) shows important differences in the slope for the numerical and 
experimental wetting curve. When the numerical curves display steep slopes with 
regards to the experimental results, then the standard deviation needs to be 
increased. If the slopes are too smooth with respect to experimental results then 
the standard deviation needs to be reduced. In this case, the slopes of the 
numerical curve are too steep compared to experimental results, especially for 
large values of suction. This means that the standard deviation for the small 
cavities (Cavities 1 and 2) needs to be increased as indicated in Table 4. 
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Table 3: Initial proposed values for parameters of cavities considering a triple logarithmic normal 
distribution 

Element Cavities 1 Cavities 2 Cavities 3 

 (m) 0.15 15 150 

 1.5 1.5 1.5 

Pvf  2E-5 2.5E-5 

Table 4: Second try for the values of parameters for cavities 

Element Cavities 1 Cavities 2 Cavities 3 

 (m) 0.15 15 150 

 3.0 3.0 1.5 

Pvf  2E-5 2.5E-5 

Fig. 14 shows the results obtained with the values indicated in Table 4. A better 
correlation of slopes for the numerical and experimental SWRCs can now be 
observed in Fig. 14(a). However, the curves look displaced to the right hand side. 
This implies that the mean size of cavities needs to be reduced in order to increase 
the suction required to intrude the pores. Therefore, the pore sizes of cavities are 
reduced as indicated in Table 5. 

The results obtained with the values of Table 5 can be observed in Fig. 15. A final 
adjustment of parameters for the best fit of the wetting curve is shown in Table 6. 
These parameters result in the curves shown in Figs. 4 and 5 of this chapter. This 
same process can be applied to fit the drying curve. At this point it can be observed 
that the numerical PSD, obtained with the fitting process of the SWRCs, is well 
correlated to the experimental PSD obtained from the SEM analysis. Besides the 
numerical and experimental PSD for a MIP test show good agreement (Fig. 6). 

Table 5: Third try for the values of parameters for cavities 

Element Cavities 1 Cavities 2 Cavities 3 

 (m) 0.06 6 60 

 3.0 3.0 1.5 

Pvf  2E-5 2.5E-5 

Table 6: Final values of the parameters for cavities 

Element Cavities 1 Cavities 2 Cavities 3 

 (m) 0.06 6 73 

 3.0 3.0 1.4 

Pvf  2E-5 2.5E-5 
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(a) 

 

(b) 

Figure 13: Comparison between experimental and numerical results for (a) SWRCs and (b) PSD 
and MIP test for initially proposed parameters. 
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(b) 

Figure 14: Comparison between experimental and numerical results for (a) SWRCs and (b) PSD 
and MIP test. Second try. 

(a) 

(b) 

Figure 15: Comparison between experimental and numerical results for (a) SWRCs and (b) PSD 
and MIP test. Third try. 
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CHAPTER 6 

Compression Strength of Soils 

Abstract: In this chapter, the probabilistic porous-solid model is used to determine the 
mean effective stress of soils at failure. The plot of the deviator stress against the mean 
effective stress shows a unique failure line for a series of triaxial tests performed at 
different combinations of the confining net stress and suction for both wetting and 
drying paths. This result confirms that the proposed effective stress equation is adequate 
to predict the shear strength of unsaturated soils. It also results in different strengths for 
wetting and drying paths as the experimental evidence indicates. 

Keywords: Shear strength, effective stress, net stress, triaxial tests, confining 
stress, axis translation technique, constant volume test, friction angle, wetting 
path, drying path, porous-solid model, soil-water retention curve, logarithmic 
normal distribution, critical state, pore size distribution, grain size distribution. 

6.1. INTRODUCTION 

The probabilistic porous-solid model can be used to obtain the mean effective 
stress at failure for a soil following any stress path. These results can be plotted 
against the deviator stress to determine the failure surface of the material. In this 
chapter, the experimental results of the Speswhite kaolin as reported by Wheeler 
and Sivakumar [83] are used. These researchers performed a series of triaxial tests 
with different stress paths. With these results, some points of the SWRC at 
wetting could be obtained. Also the PSDs of samples statically compacted at 
different vertical pressures and water contents have been reported by Thom, 
Sivakumar, Sivakumar, Murray and Mackinnon [84]. Finally, the GSD of this 
material was reported by Espitia [85]. Because at its present stage the probabilistic 
model does not consider volume changes, only those paths involving no volume 
change of the sample during shearing were considered for the numerical 
comparisons. For the same reason, the experimental results were considered in 
three different groups depending on the confining stress applied to the sample. 
These groups correspond to the confining pressures of 0.1 (three tests), 0.2 (two 
tests) and 0.3MPa (one test). Each group corresponds to a different PSD resulting 
in three different sets of SWRCs and three different groups of curves for 
parameters sf , df  and u

wS . Accordingly, numerical and experimental 
comparisons were made independently for each group. 
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6.2. NUMERICAL AND EXPERIMENTAL COMPARISONS 

All samples used for the determination of the PSD, the SWRC and tested in triaxial 
tests were prepared by static compaction at a water content of 25% (4% less than the 
optimal). These samples were compacted in nine layers at a constant displacement of 
1.5mm/min and a maximum vertical total stress of 0.4MPa. This procedure provided 
samples with dry density of 1.2g/cm3, specific volume of 2.21 and 54% degree of 
saturation. Prior to the loading stage all samples were subject to an isotropic net 
stress of 0.05MPa with suctions ranging from 0 to 0.3MPa in the triaxial cell. At 
these levels of suction all samples increased their water content. In addition, those 
samples subject to suctions of 0 and 0.1MPa experienced volumetric collapse. Once 
equilibrium was accomplished, the isotropic net stress was increased to reach a final 
value ranging between 0.1 and 0.3MPa. Because all samples increased their water 
content during the equilibrium stage it is considered that all these results correspond 
to the wetting branch of the SWRC. 

The GSD of the Speswhite kaolin reported by Espitia [85] is shown in Fig. 1. The 
same figure shows the adjusted numerical curve obtained from a double 
logarithmic normal distribution. Even though, small differences between these 
two curves exist, the numerical fitting is sufficiently accurate. 

The experimental points of the SWRCs for the confining pressures of 0.1, 0.2 and 
0.3MPa are shown in Fig. 2. These points were obtained from the results of 
controlled suction triaxial tests at no volume change performed by Sivakumar 
[86]. They correspond to the value of the degree of saturation at the critical state 
for those tests performed at the same confining pressure but different suction. This 
figure also shows the numerical SWRCs at wetting for the different confining 
pressures. The numerical curves were fitted to the experimental points by 
successively modifying an initially proposed PSD according to the procedure 
outlined in the previous chapter. In order to produce complete curves, it was 
necessary to estimate the value of the residual and the saturated degree of 
saturation according to the tendency of the experimental points. The first 
parameter was assessed as 0.05 for all tests while the second was estimated in 
0.91, 0.96 and 0.97 for the confining pressures of 0.1, 0.2 and 0.3MPa, 
respectively. 
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Fig. 3 shows the PSD obtained from MIP tests carried out on a sample prepared 
according to the aforementioned procedure. This curve shows a bimodal 
distribution with two peaks: one at approximately 0.45m and the other at 
approximately 4.5m corresponding to the size distribution of mesopores and 
macropores, respectively. The same figure shows the PSDs obtained by fitting the 
numerical and the experimental SWRC at wetting for the three different confining 
stresses. Although the experimental and the numerical curves show similar 
shapes, two main differences between them become apparent: the first one is that 
the numerical PSD is displaced to the left with respect to the experimental results. 
The second one is that the numerical maximum relative volume of macropores is 
much smaller than the experimental value. The reason for these differences can be 
explained by the fact that MIP tests were performed in”as compacted” soil 
samples before the equalization stage where the confining pressure and the 
increase in water content produced a volumetric reduction in the sample which 
affects mainly the size of macropores as has already been discussed in chapters 3 
and 5. This same deviation of the numerical PSD with respect to the experimental 
results was observed when a computational model was used to simulate the 
SWRC of this material [87]. 

 

Figure 1: Numerical and experimental GSD. 

Once the PSD for each confining pressure has been established, the determination of 
the parameters of the porous-solid model is completed. Table 1 shows the 
parameters obtained for a confining pressure of 0.1 MPa. Notice that the bonds 
needed a double logarithmic distribution (B1 and B2) to better simulate the SWRCs. 
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Table 1: Parameters of the model for a confining pressure of 0.1MPa 

Parameter M S B1
 B2

 Sol1
 Sol2

 

Mean size  (m) 0.8 0.05 0.13 .008 1.1 .02 

Standard deviation  1.4 1.7 1.4 1.7 1.1 3.8 

Pvf 0.01  0.01  .005  

Notes: M = macropores, S = mesopores, B1 = Bonds (1), B2 = Bonds (2), Sol1 = Solids (1), Sol2 =Solids (2), 
Pvf = Proportional volume factor. 

For the confining pressures of 0.2 and 0.3MPa all parameters included in Table 1 
remain the same except for the mean size of macropores which take the value of 
0.83m and 0.75m, respectively. The connectivity for the porous model was 
considered to be 4. Finally, a value of 0.25 for the shape factor allowed matching 
the numerical and experimental voids ratio for the different confining pressures as 
shown in Table 2. 

Table 2: Experimental and numerical voids ratio for different confining pressures 

Confining Stress (MPa) 0.1 0.2 0.3 

Experimental voids ratio 1.18 1.13 0.99 

Numerical voids ratio 1.17 1.15 1.0 

Once all parameters of the porous-solid model have been defined, it is possible to 
simulate a wetting process and obtain the values of parameters sf , df , u

wS  and  
for the full range of suction and for each confining pressure. These results are 
presented in Fig. 4. In Figs. 4(a) and 4(c) it can be seen that both parameters sf  
and u

wS  increase continuously with the degree of saturation although the first 
parameter grows at an increasing rate while the second at a decreasing rate. On 
the contrary, Fig. 4(b) shows that parameter df  initially increases up to a 
maximum and then decreases with the degree of saturation. Fig. 4(d) shows the 
numerical end experimental values of parameter  for each confining pressure. 
The numerical values were derived from Equation (2.15) whereas the 
experimental ones were obtained by assuming that the failure surface is 
represented by a single line in the axes of mean effective stress against deviator 
stress as expressed by Equation (2.19). It can be observed that the numerical and 
experimental results lie fairly close for the confining pressures of 0.1 and 0.2MPa. 
A similar comparison can be made for the matric suction stress *

s  as defined in 
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Equation (2.17). This comparison is presented in Fig. 5 and again experimental 
and numerical results are quite similar for all confining pressures. The numerical 
results indicate that the maximum strength of the soil can be reached at a degree 
of saturation of 0.5 or 0.6 which seems rather low. In order to improve these 
predictions both branches of the SWRC for the entire range of suction would be 
required. 

It is noteworthy that parameters sf , u
wS  and  shown in Fig. 4 vary from zero to 

one even if the degree of saturation of the material does not reach these values. 
This happens because it is being considered here that free water is the main 
responsible for the development of the capillary phenomenon as pointed out 
before. This is equivalent to consider an effective degree of saturation ( ) for 
the material defined by the relationship: 

 (6.1) 

where  and  represent the residual and saturated degree of saturation of the 
material. This equation has been proposed as a main parameter to determine the 
strength of unsaturated soils by Vanapalli, Fredlund, Pufahl and Clifton [21] 
among others and its performance to this purpose has been evaluated by Garven 
and Vanapalli [19]. 

 

Figure 2: Numerical and experimental SWRCs for different confining pressures. 
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Figure 3: MIP test results and numerical PSDs for different confining pressures. 
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(c) 

 

(d) 

Figure 4: Parameters derived from the porous-solid model for different confining pressures (a) 

saturated fraction sf  , (b) unsaturated fraction uf , (c) degree of saturation of the unsaturated 

fraction u
wS and (d) parameter . 
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distribution of water into the soil should include the pore size change generated by 
loading or suction increase. According to Simms and Yanful [46, 78], macropores 
are responsible for most of the volumetric strain of soils. These results indicate 
that macropores keep reducing their size with further increments of load or 
suction up to the point where most of them reach the range of mesopores. Still, 
most mesopores basically maintain their original size during loading or suction 
increase. This type of behavior can be introduced into the model by proportionally 
reducing the size of macropores with the level of loading as proposed by Koliji, 
Laloui, Cusinier and Vulliet [88]. In such cases the porosimetries of the sample 
before and after the shear test would be required. 

Figure 5: Numerical and experimental matric suction stress for different confining pressures. 

Figure 6: Experimental results on the effective stress plane. 
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CHAPTER 7 

Tensional Strength 

Abstract: In this chapter, the probabilistic porous-solid model is used to simulate the 
tensional strength of unsaturated soils tested at different water contents. The strength of 
unsaturated soils can be split in two parts: one related to the net stress and the other to 
suction. The strength generated by suction has its origin on the additional contact 
stresses induced to solid particles by water meniscus. This additional contact stress is 
called matric suction stress. In that sense, the tensional strength of soils represents the 
matric suction stress of the material at that particular water content. The numerical and 
experimental comparisons of the tensional strength of unsaturated soils tested at 
different water contents show that the probabilistic porous-solid model can simulate this 
phenomenon with sufficient accuracy. 

Keywords: Direct tension test, water meniscus, tension stress, suction, matric 
suction stress, additional contact stress, tensional strength, probabilistic porous-
solid model, effective stress, net stress, suction, cohesion, water menisci, 
homogenous material, retention curves. 

7.1. ITRODUCTION 

Equation (2.18) represents the strength of an unsaturated soil subjected to certain 
suction. This equation can also be rewritten as: 

   *' tan ( ) tan tann n s
n

c             

where c represents the cohesion of the soil. If osmotic suction is neglected, the 
matric suction stress represents an additional contact stress induced by water 
meniscus to solid particles (Lu, 2008) and is given by the relationship: 

* s u u
s ws f S f s       … (7.1)

Between the considerations made to obtain this equation is that the soil is 
considered as a homogeneous isotropic material and in that sense the matric 
suction stress represents an isotropic stress. During a pure tension test the 
maximum strength reached by a soil sample represents the linking stress between 
solid particles and therefore, it also represents the matric suction stress of the 
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material at that particular water content [89]. Thus, tension tests can give a direct 
value of the matric suction stress of soils. In that sense, the probabilistic porous-
solid model can be used to determine the matric suction stress of a soil and 
therefore its tensional strength. 

7.2. TENSION TESTS 

Vesga and Vallejo [89] performed a series of direct tension tests on kaolin 
samples with different degrees of saturation following a drying path. At the same 
time these researchers reported the SWRC of the material. 

The tension tests were performed on flat bowtie-shaped samples. In this way, the 
samples could be fixed at their extremes and failure always occurred at their 
center. The samples were 7cm long, 2.2cm thick with a central neck 2.5cm wide. 
These samples were casted in a flat mould where the material was placed at a 
water content close to the liquid limit (40%). Then a vertical load of 0.03MPa was 
applied for 24 hours. Once the loading stage was finished, the sample was 
subjected to a drying process in controlled humidity conditions up to the point 
where it reached a water content previously specified. Finally the sample was 
placed in a membrane for 48 hours to allow the homogenization of the humidity 
before the test was performed. 

Unfortunately, all these tests were performed following a drying path and there is 
no information related to the wetting path. In any case, the porous-solid model 
was used to simulate the drying branch of the SWRC of the material by 
successively adjusting an initially proposed PSD as already explained in Chapter 
5. Fig. 1(a) shows the experimental SWRC obtained by Vesga and Vallejo [89] 
using the filter paper method. This figure also shows the fitted numerical SWRC 
obtained with the porous model. In this case a single logarithmic normal function 
was considered for both macropores and mesopores whereas a double logarithmic 
normal distribution was considered for bonds to achieve the best fit with the 
SWRC. The required data for each distribution are the mean radius, the standard 
deviation and the proportional volume factor. These values obtained for these 
parameters are presented in Table 1. 
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Table 1: Parameters of the model 

Parameter M S B1
 B2

 

Mean size  (m) .075 0.0014 0.0009 .03 

Standard deviation  1.5 5.1 7 3.5 

Pvf 0.02   0.1 
Note: M = macropores, S = mesopores, B1 = Bonds (1), B2 = Bonds (2), Sol1 = Solids (1), Sol2 =Solids (2), Pvf = 
Proportional volume factor. 

These parameters establish the frequency of the different sizes of pores in the 
porous network. With this data and the size of the pores, it is possible to 
determine the numerical relative volume for each size as shown in Fig. 1(b). Fig. 
1(c) shows the values of parameters , ,  and  obtained from the porous-
solid model when the sample follows a drying path. Finally, Fig. 1(d) shows the 
values for parameter  vs. suction. By comparing Figs. 1(a) and (d) it can be 
observed that the values of parameter  are slightly smaller than those of the 
degree of saturation. All these parameters were obtained only for the drying 
condition as no information was provided for the wetting branch of the SWRC. 

Fig. 2 shows the comparison between the experimental tensional strength and the 
matric suction stress obtained from Equation (7.1). Because this last value 
represents the bonding stress between solid particles, it is equivalent to the 
tensional strength of the soil. 
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(b) 

 

(c) 

 

(d) 

Figure 1: Results for a kaolin sample: (a) Fit of the experimental SWRC, (b) Numerical PSD, (c) 
parameters , ,  and  and (d) values of  (experimental data by Vesga and Vallejo [89]). 
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The numerical and experimental results presented in Fig. 2 show that a maximum 
tension stress occurs at certain point of the drying process. This maximum is 
related to a maximum in the matric suction stress represented by Equation (7.1). 
This maximum can be explained as follows: when an initially saturated soil is 
subjected to drying, the number of menisci producing the link between solid 
particles increases at the same rate as the unsaturated fraction increases (see Fig. 
1(c)). Then at certain point, the unsaturated fraction starts decreasing with 
increasing suction, meaning that the number of menisci decrees at certain point of 
the drying process. This happens because at this point, a dry fraction develops and 
progresses with the value of suction as it can be observed in Fig. 1(c). This 
reduction in the number of water menisci in the soil sample eventually results in a 
reduction of the matric suction stress even if suction keeps increasing. 

The comparison presented in Fig. 2 shows that the model predicts a maximum 
tension stress slightly larger than the experimental value. Additionally the numerical 
maximum stress is displaced to the left hand side with respect to the maximum 
experimental value, however, the shape and values of the numerical curve 
correspond well with the experimental results. One problem with these comparisons 
is that the tension tests were not performed in controlled suction conditions while the 
numerical results consider that suction remains constant during the test. 

In any case and according to these results, it can be said that the probabilistic 
porous-solid model simulates with fair precision the results of tension tests 
performed at different water contents. 

Figure 2: Numerical and experimental results comparison for tension tests (experimental data by 
Vesga and Vallejo [89]). 
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CHAPTER 8 

Volumetric Behavior 

Abstract: An equation to account for the volumetric behavior of unsaturated soils is 
proposed in this chapter. This equation is based on the effective stress principle and 
results in a unifying framework for the volumetric behavior for both saturated and 
unsaturated soils. The results of the proposed equation are compared with experimental 
results published by different researchers. These comparisons show that the equation is 
adequate to account for wetting-drying and net stress loading-unloading paths. This 
analysis confirms that the effective stress principle can be applied to the volumetric 
behavior of unsaturated soils. 

Keywords: Volumetric behavior, effective stress principle, isotropic triaxial test, 
controlled suction test, effective stress, compression index, unloading-reloading 
index, unsaturated soils, collapse, elastoplastic framework, hydro-mechanical 
coupling, water menisci, macropores shrinkage, suction hardening, yield surface. 

8.1. INTRODUCTION 

Different approaches have been proposed to simulate the volumetric behavior of 
unsaturated soils. Two of the main trends are the independent stress variables 
approach and the single stress variable approach. In the first one, two different 
coefficients are used to account for the contribution of net stress and suction on 
the volumetric behavior. In the second case, a single volumetric coefficient is 
related to a single stress variable (in most cases referred as the effective stress) to 
simulate the volume change. 

One of the main advantages in using the single stress approach is that the hydro-
mechanical coupling observed in unsaturated soils is implicit into the formulation. 
On the other hand, the difficulties in finding a correct explanation for the 
phenomenon of collapse upon wetting were one of the main objections to this 
approach. However, it is presently acknowledge that the simulation of this 
phenomenon requires, in addition to the effective stress equation, an appropriate 
elastoplastic framework. In contrast, the independent stress variables models seem 
to clearly explain the phenomenon of collapse upon wetting while the 
implementation of the hydro-mechanical coupling has been included in different 
degrees [22, 23, 90, 91]. 
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The first approach has the following general form for the elastoplastic volumetric 
strain increment dv: 

௩ߝ݀ ൌ
1
ݒ
൬ߣ௩௣

ҧ݌
ҧ݌
൅ ௩௦ߣ  

ݏ݀
ሺݏ ൅ ௔௧௠ሻ݌

൰ 

Where v is the specific volume of the soil, ݌ҧ and ݀݌ҧ represent the apparent 
preconsolidation mean net stress at the current suction and its increment, 
respectively, s and ds are the maximum previous suction and its increment, patm is 
the atmospheric pressure, λvp and λvs are the slopes of the compression curves due 
to increases of the mean net stress and suction, respectively, in a semilogarithmic 
plane. Both slopes show negative values meaning that a negative volumetric strain 
represents a volume reduction. This expression allows great flexibility in the 
simulation of the volumetric behavior of unsaturated soils. It is common to 
express vp as a function of suction while vs is considered constant. However, the 
experimental results indicate that vp must also depend on the mean net stress 
while vs must depend on both the mean net stress and suction (see for example 
[92] and [93]). In that sense, the above expression becomes more complicated 
than it seems. Another disadvantage of this expression is that under zero suction 
the equation for the volumetric behavior of saturated soils is not recovered and 
therefore there is not a smooth transition between saturated and unsaturated states 
[94]. Examples of this approach are given in the models developed by Alonso, 
Gens and Josa [7], Wheeler and Sivakumar [83] and Thu, Rahardjo and Leong 
[95], among others. 

The second approach can be written in the following general form: 

௩ߝ݀ ൌ
௩ߣ
ݒ
Ԣ݌݀
Ԣ݌

 

where ݌′ and ݀݌′ represent the preconsolidation effective stress and its increment, 
respectively and v represents the slope of the compression curve in the axes of 
the logarithm of the effective stress versus specific volume. If parameter v is 
expressed as a function of suction alone, it shows decreasing values with 
increasing suction. This, however, contradicts the experimental results [94]. To 
avoid this inconsistency, v should be written as a function of the mean net stress, 
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the preconsolidation stress and suction. Another possibility is to write v as a 
function of the degree of saturation [94]. The effective stress approach has been 
used in the models proposed by Sheng, Sloan and Gens [25], Sun, Cui, Matsuoka 
and Sheng [91], Khogo, Nikano and Miyazaky [96], Loret and Khalili [97], 
Kholer and Hofstetter [98] and Koliji, Laloui and Vulliet [99] among others. 

Recently Sheng, Fredlund and Gens [100] proposed a combination of these two 
trends using two different volumetric parameters in conjunction with a stress 
parameter that accounts for the effects of both net stress and suction in the form: 

௩ߝ݀ ൌ ௩௣ߣ
ௗ௣ҧ

௣ҧା௦
൅ ௩௦ߣ

ௗ௦

௣ҧା௦
… (8.1) 

Parameter λvs depends on the value of λvp according to the following relationship: 

௩௦ߣ ൌ ቊ
ݏ ௩௣ߣ ൏ ௔ݏ

௩௣ߣ
௦ೌାଵ

௦ାଵ
ݏ  ൐ ௔ݏ

… (8.2) 

where sa represents the saturation suction [100] (i.e. the value of suction at the air 
entry value). In this case, the volumetric strain by net stress or suction increase 
depends on both the current net stress and the current suction; therefore, Equation 
(8.1) can more accurately reproduce the volumetric response of unsaturated soils 
reported in the international literature. 

One of the most important features of this equation is the introduction to some 
extent of the hydro-mechanical coupling trough parameter sa. In addition, 
although the two compression indexes ߣ௩௦ and ߣ௩௣ can be related using Equation 
(8.2), different relationships can be used for more general cases. When plotted in 
the mean net stress axis against suction, the yield surface generated with Equation 
(8.1) shows a concavity. In fact most constitutive models for unsaturated soils 
show a concavity at the transition between saturated and unsaturated states (see 
for example [101-104]). Although, this concavity poses some difficulties in 
obtaining a unique response, this can be numerically solved. Moreover, Equation 
(8.1) cannot be integrated and therefore requires special treatment in the stress 
integration of the constitutive model. 
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8.2. PROPOSED EQUATION 

Júarez-Badillo [105] and Butterfield [106] proposed the following equation for 
the volumetric behavior of saturated soils: 

݀߳௩ ൌ
ݒ݀
ݒ
ൌ ௩ߣ

Ԣ݌݀
Ԣ݌

 

Integration of the above equation results in: 
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where ݌଴
′  represents the initial effective stress corresponding to a volume ݒ଴ in the 

virgin consolidation line. For very large values of the mean effective stress ݌′, the 
specific volume v=1+e tends to zero which is clearly inconsistent. A more likely 
relationship would involve the void ratio instead of the specific volume, in the 
form of: 

ௗ௘

௘
ൌ ௘ߣ

ௗ௣ᇱ

௣ᇱ
… (8.3) 

where ߣ௘ represents the slope of the compression line in a logarithmic plane of 
effective stress vs. void ratio and because the void ratio reduces with increasing 
effective stress it exhibits negative values. A similar expression was proposed by 
Sheng, Yao and Carter [107] for the volumetric behavior of sands upon isotropic 
loading. Integration of the above equation results in: 

௘

௘బ
ൌ ቀ௣

ᇲ
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… (8.4) 

where ݁଴ represents the initial void ratio. 

Fig. 1 shows the plot of this equation in the axes of the logarithm of the mean 
effective stress against void ratio for different values of the compression index e 
and for an initial void ratio of 1.14 at a mean effective stress of 0.02MPa. Most 
soils show values of the parameter e ranging between -0.05 and -0.3 in which 
case, the volumetric behavior for stresses in the range of civil engineering interest 
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(from 0.1 to 10MPa) can be approximated to straight lines, as it is commonly 
done. 

 

Figure 1: Volumetric behavior of saturated soils for different values of the compression index. 

For the case of unsaturated soils, its volumetric behavior can be analyzed through 
the results of two types of tests: isotropic loading by net stress increase at constant 
suction and suction increase at constant net stress. The results of the first type of 
test can be summarized as follows: when suction is below the air entry value, the 
soil behaves as saturated. However, when suction surpasses the air entry value, 
water menisci appear among the solid particles. These menisci produce additional 
contact stresses between the solids increasing the stability of the large pores as if 
the preconsolidation stress of the soil was increased. Therefore, the shrinkage of 
these pores can only be produced by applying further increments of the mean net 
stress. This means that the material experiences suction hardening. The greater the 
applied suction, the larger the mean net stress required for shrinking these pores 
and the soil behaves as an overconsolidated material. 

For the second type of test, the soil behaves exactly the same as for the first case 
as long as suction remains below the air entry value. When suction becomes 
larger than the air entry value a number of pores becomes dry. Under these 
conditions, when suction increases, all saturated pores tend to shrink following the 
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same law as for the saturated material. On the contrary, all dry pores show no 
reaction to suction changes. 

According to these descriptions, the evaluation of the volumetric response of 
unsaturated materials requires the quantification of the menisci of water and the 
pores that remain saturated at certain suction. For that purpose, the porous-solid 
model developed in Chapter 4 can be used. 

The studies on the PSD of different soils indicate that in some cases these 
materials show a bimodal distribution meaning that they show two crests [78]: 
one corresponding to the macropores or large cavities and the other to the 
mesopores or small cavities. The macropores are cavities that show special 
arrangements of solid particles in the form of vaults or arches. These pores have 
the characteristic of being larger than the solid particles forming the pore; 
therefore, their equilibrium is precarious upon isotropic loading or shearing. This 
can be confirmed by analyzing the PSD of different soils before and after 
performing triaxial tests as Futai and Almeida [92] and Simms and Yanful [45] 
have done. These researchers used the MIP test to compare the PSD before and 
after testing a soil. They found that most macropores reduce in size and transform 
into smaller pores at the end of these tests. They concluded that macropores are 
responsible for most of the volumetric response of soils. 

On the other hand, the mesopores have the characteristic of being smaller than 
their surrounding solids; therefore, they are very stable and in general maintain 
their size upon isotropic loading or shearing. Sometimes soils show a mono-
modal size distribution similar to uniform dense sands. In this case, macropores 
are absent from the soil and as such all volumetric deformation is generated by the 
shrinkage of mesopores which in any case is small compared with the shrinkage 
of macropores in a bimodal structured soil. Mono-modal size distributions can 
also be obtained from slurries made of soils showing uniform GSD. When slurries 
start to dry, they adopt well defined structures with diverse PSDs, which depend 
greatly on the GSD of the material. Bimodal GSDs usually generate bimodal 
PSDs as it is observed in the experimental results shown in section 4 of this 
chapter. These bi-modal or mono-modal structures are also reflected on the shape 
of the SWRCs. Samples with monomodal PSDs show a single inflection point in 
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their SWRCs. On the contrary, samples with bimodal or trimodal PSD show two 
or three inflection points in their SWRCs, respectively. In any case, the porous 
model can simulate any of these cases. In the monomodal case, it is sufficient to 
consider that macropores do not exist in the porous structure of the material. 

The micropores or bonds represent the smallest pores usually found at the contact 
between solid particles and therefore they are also very stable when the mean net 
stress or suction increases. All these elements are shown schematically in Fig. 2. 

Now, consider Equation (2.15) representing Bishop’s parameter . This 
relationship can be written in the following form: 

߯ ൌ ݂௦ ൅ ܵ௪௨ ݂௨ ൌ  ෍ܵ௪௜  ݂௜

௙

 

where superindex i represents the type of fraction: dry (d), saturated (s) or 
unsaturated (u). In terms of volumetric behavior the above equation can be 
interpreted as follows: it represents the addition of the product of every fraction 
by its degree of saturation. This means that for the saturated fraction, the effect of 
an increment of suction is the same as an increment of the mean net stress (term 
௦ in Equation (2.14)) because in that case ܵ௪௦݂ ݏ ൌ 1, whereas for the unsaturated 
fraction, the effect of an increment of suction is proportional to the degree of 
saturation of this fraction (term ݏ ܵ௪௨ ݂௨ in Equation (2.14)). Finally, the dry 
fraction ሺ݂ௗሻ shows a nil degree of saturation and therefore does not appear in 
Equation (2.14). In other words, Bishop’s parameter represents the weighted 
degree of saturation of all three fractions. 

Even if the dry fraction does not play any role in the volumetric deformation 
during suction increase nor appears in the determination of parameter χ, it 
certainly plays a role during mean net stress increase as in this case all fractions 
contributes equally to the volumetric deformation of the soil. This means that the 
term ݌ҧ in Equation (2.14) is multiplied by the sum of all fractions which is equal 
to one. This agrees with the description of the volumetric behavior of unsaturated 
soils provided before. 
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Figure 2: Soil structure: macropores, mesopores, bonds and solids. 

It is noteworthy that Equation (8.4) uses the same compressive index e no matter 
if it corresponds to an increase in mean net stress or suction although, for this last 
case, the index is affected by parameter  because it represents the proportion of 
pores affected by suction changes. In other words Equation (8.4) represents a 
single compression curve for both net stress and suction increase. 

8.3. ELASTOPLASTIC FRAMEWORK 

In addition to Equation (8.4), the modeling of the volumetric behavior of 
unsaturated soils requires an elastoplastic framework. The framework considered 
herein is sketched in Fig. 3 in the axes of mean net stress (Fig. 3(a)) and mean 
effective stress (Fig. 3(b)). A normally consolidated soil sample exhibits a 
Loading Collapse Yield Surface (LCYS) represented by a line forming an angle 
of 1350 with the mean net stress axis as established by Sheng, Sloan and Gens 
[25] (Fig 3(a)). When this sample is subjected to a suction s, the drying path 
(represented by a vertical line in Fig. 3(a)) crosses the initial yield surface 
generating a plastic deformation. This plastic deformation produces the hardening 
of the LCYS which displaces to the right hand side. This displacement depends on 
the increment of the effective stress applied to the soil and is represented by the 
value of the matric suction stress s. In other words, s represents the increment 
of the mean net stress that produces the same volumetric plastic deformation 
generated during the drying of the soil. If at this point the soil is wetted up to 
saturation, it follows an elastic unloading that does not affect the position of the 
LCYS. Thus, it can be inferred that the preconsolidation stress in saturated 
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conditions has also increased in the quantity s. This means that the LCYS can be 
represented by a vertical line in the mean net stress plane and therefore, it shows 
the same shape of the drying path but displaced in the quantity s. If the 
intersecting points of this surface with the loadings paths followed by net stress 
increase at constant suction are linked together by a line (fine dotted line in (8.3a), 
it adopts the shape of the LCYS that has been experimentally determined by 
different researchers (see for example [92, 95, 108]). It can be argued (as Sheng 
[94] does) that the experimental procedure used to obtain the LCYS considers that 
the soil initially behaves elastically during the loading stage after drying but this 
could not be the case. Only the analysis of more experimental results would give 
light to this issue. 

In the axis of the mean effective stress, the drying path initially adopts a slope of 
45

o
 and then deviates from this direction as the soil becomes unsaturated. 

Similarly, the LCYS adopts this same shape and displaces the quantity s on the 
mean effective stress axis as shown in Fig. 3(b). 

According to this framework, when Equation (8.4) is plotted for a set of tests 
where the net stress increases while suction remains constant, each sample 
undergoes a different hardening given by the quantity s and therefore, the 
loading paths are represented by a family of curves in the axes of the logarithm of 
the mean net stress against void ratio as shown in Fig. 4(a). These curves are 
similar to the volumetric response of unsaturated soils reported by different 
researchers (see for example: [83, 92, 107, 109]). When these results are plotted 
on the axes of the logarithm of the mean effective stress versus void ratio, a 
family of curves, as those shown in Fig. 4(b), is obtained. In this case, the data 
reported by Futai and Almeida [92] for a particular soil were used in order to 
establish the values of Bishop’s parameter ߯ at different suctions. This procedure 
is shown in the next section of this chapter. In general, these curves can be 
assimilated to parallel straight lines for small ranges of the mean effective stress. 
Because parameter ߯ depends on the SWRCs of the material, the amount of 
suction hardening also depends on these curves. In general, soils showing large 
ranges of suction in their SWRCs exhibit large suction hardening. In contrast, 
suction hardening is difficult to observe in soils showing a small range of suction 
in their SWRCs. 
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Figure 3: Evolution of the LCYSs during drying in (a) the mean net stress axis and (b) mean 
effective stress axis. 
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(a) 

 

(b) 
Figure 4: Numerical volumetric behavior of soils related to (a) mean net stress and (b) mean 
effective stress. 

Elastic behavior of the material occurs when the current mean effective stress is 
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This behavior happens when the mean net stress applied to the soil reduces while 
suction remains constant but, this may happen eventually when the soil attains 
large suctions because the matric suction stress reduces after reaching a maximum 
as shown in the previous chapter. 

8.4. NUMERICAL AND EXPERIMENTAL COMPARISONS 

In order to evaluate the proposed framework for the volumetric behavior of 
unsaturated soils, the results of various tests performed on a variety of materials 
and for different loading conditions were employed. Fleureau, Kheirbek-Saoud, 
Soemitro and Taibi [93] prepared different clayey soils at a water content of 1.5 
times its liquid limit. This slurry was consolidated in an oedometer cell with 
vertical stresses ranging between 0.06 and 0.2MPa. Then the samples followed a 
drying-wetting path where suction was controlled using the axis translation 
technique for low suctions and the vapor circulation technique for large suctions. 
With the results of these tests, the variations of the void ratio, the degree of 
saturation and the water content with the value of suction were determined. Also 
the GSD and both SWRCs for some of these materials were reported. Here the 
results of the Sterrebeek loam, Montmorillonite clay and Yelow clay are 
presented. As the PSD of the soil was not available, it was inferred by fitting the 
numerical SWRCs with the experimental results according to the procedure 
outlined in Chapter 5. 

The numerical PSD along with the experimental GSD and the void ratio were 
used to build the porous-solid model from which the value of parameters ݂௦, ݂௨ 
and ܵ௪௨  were determined as a function of suction for both the wetting and drying 
paths. This allowed determining the mean effective stress given by Equation 
(2.14) while the numerical volumetric response of the material was derived from 
Equation (8.4). Fig. 5(a) shows the fitting of the SWRCs for the Montmorillonite 
clay. Fig. 5(b) represents the numerical PSD obtained at the end of the fitting 
process along with the experimental GSD of the material in the axes of size versus 
relative volume. The relative volume is the volume of pores (or solids) of certain a 
size divided by the total volume of pores (or solids) as explained before. Notice 
the similarity in shape of these two curves as has already been pointed out by 
Alonso, Rojas and Pinyol [52]. Fig. 5(c) shows the values of parameters ݂௦, ݂ௗ, 
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݂௨, ܵ௪௨  and  obtained from the porous-solid model during a drying path. It can be 
observed that the saturated fraction starts reducing at very low suctions while the 
dry fraction only appears at very large suctions whereas the unsaturated fraction 
increases up to a certain point and then decreases to become nil at very large 
suctions. It can also be observed that parameter  is closely related to the 
saturated fraction of the soil. In contrast, the degree of saturation of the 
unsaturated fraction ܵ௪௨  shows important fluctuations at low values of suction. 
This happens because most of the soil is still saturated at these values of suction 
and the unsaturated fraction (represented by those solids and their surrounding 
pores showing a combination of saturated and dry pores) is composed of a small 
number of elements (solids, cavities and bonds). Therefore a small change in the 
number of saturated elements produces important changes in the value of this 
parameter. 

Only when the number of elements of this fraction is large enough it becomes 
smooth and shows a continuous increase and, at a certain point it reduces to 
become nil at large suctions. Finally, the numerical prediction and the 
experimental results of the volumetric behavior upon drying are compared in Fig. 
5(d). For each increment of suction the value of parameters ݂௦, ݂௨ and ܵ௪௨  are 
obtained, the value of parameter  is computed and the new void ratio is 
calculated. These results were obtained for e = -0.36. 

Following the same procedure the results of the Sterrebeek loam were simulated. 
Fig. 6(a) shows the fitting of the wetting (W) and drying (D) SWRCs. Fig. 6(b) 
shows the values for parameters ݂௦, ݂௨, ݂ௗ and ܵ௪௨  at drying. The values of these 
same parameters can also be found at wetting using the porous-solid model. With 
these values parameter  can be obtained for both conditions: wetting and drying 
as shown in Fig. 6(c). Finally, Fig. 6(d) presents the comparison between 
numerical and experimental results for the volumetric behavior of this material. In 
this case, the volumetric response of the slurry following a drying path was 
determined for two different initial conditions: at zero net stress and at a 
preconsolidated net stress of 0.2MPa. These results were obtained with e = -0.12. 
For both cases, it can be said that Equation 8.4 is adequate for simulating the 
volumetric behavior of the material. 
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(d) 

Figure 5: Results for the Montmorillonite clay: (a) fitting of the SWRCs, (b) numerical PSD and 
experimental GSD, (c) parameters ࢛࢝ࡿ ,࢛ࢌ ,࢙ࢌ  and  and (d) volumetric behavior by suction 
increase (experimental data by Fleureau, Kheirbek-Saoud, Soemitro and Taibi [93]). 
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Figure 6: Results for Sterrebeek loam (a) fitting of the SWRCs, (b) parameters ࢛ࢌ ,࢙ࢌ and ࢛࢝ࡿ  (c) 
parameter  and (d) volumetric behavior by suction increase at two different net stresses 
(experimental data by Fleureau, Kheirbek-Saoud, Soemitro and Taibi [93]). 

Fig. 7 shows the results obtained for the Yellow clay. Fig. 7(a) shows the fitting 
of the SWRCs at wetting (W) and drying (D). Fig. 7(b) shows the values for 
parameters ݂௦, ݂௨, ݂ௗ and ܵ௪௨  at drying. The values for parameter  at wetting 
and drying are shown in Fig. 7(c). Finally, Fig. 7(d) presents the comparison 
between numerical and experimental results for the volumetric behavior of this 
material following wetting and drying paths. These results were obtained for e = 
-0.13 and e = -0.013. It can be observed that for both stress paths the model 
adequately simulates the behavior of the material. 
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(d) 

Figure 7: Results for Yelow clay (a) fitting of the SWRCs, (b) parameters ࢛ࢌ ,࢙ࢌ and ࢛࢝ࡿ  (c) 
parameter  and (d) volumetric behavior by suction increase at two different net stresses 
(experimental data by Fleureau, Kheirbek-Saoud, Soemitro and Taibi [93]). 

Futai and Almeida [92] reported the results of different tests performed on 
undisturbed samples of a residual soil. Additional data included the GSD, the PSD 
obtained from MIP tests and both SWRCs obtained by combining the suction 
plate and the filter paper technique. Fig. 8 shows the results of isotropic 
compression tests done on gneiss samples subjected to three different suctions. 

Fig. 8(a) shows the fitting of the SWRCs which resulted in the numerical PSD 
shown in Fig. 8(b). In this last figure the experimental results of a MIP test are 
also included and compare well with the numerical results. Fig. 8(c) shows the 
values of parameter  obtained from Equation (2.15). Finally, Fig. 8(d) shows the 
comparison between numerical and experimental results of the volumetric 
behavior during isotropic loading tests on samples subjected to different suctions. 
It can be noted that although there is some scattering for the sample tested at a 
suction of 0.3MPa, the proposed framework is able to adequately simulate the 
volumetric behavior of an isotropically loaded soil subjected to different suctions. 

The volumetric strains were determined using Equation (8.5) up to the yield stress 
generated at the end of the drying stage. From that point, Equation (8.4) was used 
for the rest of the curve. Because the increase in the yield stress of a saturated  
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(d) 

Figure 8: Results for a residual gneiss (a) fitting of the SWRCs, (b) numerical and experimental 
PSD, (c) values of parameter  and (d) volumetric behavior at different suctions (experimental 
data by Futai and Almeida [92]). 

sample generated during the drying stage is given by the quantity s, the final 

yield stress is obtained by adding the initial preconsolidation stress of the soil in 

saturated conditions to the increment of the yield stress during the drying stage. 

For a small increment of suction (ds), the increase in the yield stress is given by 

ҧ݌݀ ൌ  ݀ݏ ൅   where ds represents the increment of suction and d the݀ ݏ

variation of Bishop’s parameter due to that increment. The preconsolidation stress 
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Similar tests were performed by Cunningham, Ridley, Dineen and Burland [110] 

in a mixture of 20% speswhite kaolin, 10% of London clay and 70% of silica silt. 
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oedometer to a maximum vertical stress of 0.2 MPa. The soil samples were then 

trimmed from this pre-consolidated soil mass to the appropriate size. The tests 

included the GSD, both SWRCs obtained from the filter paper technique, 

isotropic loading and shearing tests at constant suction in the triaxial apparatus. 

For these last tests, suction was controlled using the air circulation technique and 

was measured directly in the soil samples using two suction probes. Some of the 

experimental results are shown in Fig. 9. The experimental SWRCs and the 

numerical fitting for these curves are shown in Fig. 9(a). Fig. 9(b) shows the 

variation of parameter  with suction. With these values it is possible to obtain the 

numerical volumetric response of the material during suction increase as shown in 

Fig. 9(c). In this case, the experimental behavior shows a clear elastic rebound 

(even if there is some scattering) indicating that the effective stress reduces at 

some stage during the drying process. This happens because as suction increases, 

the value of the matric suction stress (represented by the product sχ) reaches a 

maximum and then decreases, as shown in Fig. 9(d). In this figure, it can be noted 

that when suction reaches a value slightly greater than 1 MPa, the matric suction 

stress reaches its maximum and then reduces while suction keeps increasing. 

When the drying path inverses to wetting, matric suction stress reduces further 

then increases (but never reaches the drying maximum value) and finally reduces 

again while suction keeps reducing. Therefore, when the matric suction stress 

reduces after reaching its maximum value, the numerical response switches from 

elastoplastic (Equation (8.4)) to purely elastic (Equation (8.5)). The numerical 

results were obtained with the following parameters e = -0.13 and e = -0.04. The 

switch from elastoplastic to elastic behavior during suction increase has been well 

documented by Khalili, Geiser and Blight [111]. Similar results were reported and 

simulated by Vlahinic, Jennings and Thomas [112] and Blight [113] on different 

porous materials. This reduction in the effective stress during drying can also be 

observed in the experimental results reporting the strength of the material with 

suction. A maximum value and then a reduction of the strength can be observed if 

suction is increased sufficiently (see for example: [21, 34, 35, 70, 112, 114, 115]). 

This same behavior is observed in the tensional strength of soils as shown in the 

previous chapter and also reported by Fredlund, Xing, Fredlund and Barbour [71]. 
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Also, some constitutive models consider this reduction in the strength of soils 

with suction (see for example [70, 116, 117]). Not all soils show this behavior; for 

example, soils with large clay contents may show a continuous increase in 

strength with suction due to the presence of layers of adsorbed water that does not 

disappear even at very large suctions. On the contrary, the effect of suction on the 

strength of sandy soils disappears completely at large suctions. Fig. 9(e) shows 

the numerical and experimental results for isotropic loading at different suctions 

on the axis of the mean net stress against void ratio. In this case the materials were 

dried from slurry and because of that, the preconsolidation stress equals the matric 

suction stress sχ, where parameter  was obtained from Fig. 9(b). 
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Figure 9: Results for a soil mixture: (a) fitting of the SWRCs, (b) parameter , (c) volumetric 
response with suction, (d) matric stress sχ and (e) volumetric response with mean net stress 
(experimental data by Cunningham, Ridley, Dineen and Burland [110]). 
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(c) 

Figure 10: Results for a coarse kaolin: (a) fitting of the SWRCs, (b) parameter  in wetting and 
drying and (c) volumetric behavior (experimental data by Thu, Rahardjo and Leong [95]). 
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Other tests were conducted by Thu, Rahardjo and Leong [95] on statically 
compacted samples of industrial coarse kaolin. All samples were compacted at the 
optimum water content and then saturated using back pressure. Afterwards, all 
samples were consolidated at an isotropic net stress of 0.01 MPa following a 
drying stage where suction ranged between 0 and 0.3MPa. Finally, the samples 
were isotropically loaded up to 0.7MPa in net stress. The fitting of the SWRC in 
wetting and drying is shown in Fig. 10(a). The values of parameter  in wetting 
and drying are shown in Fig. 10(b). Finally, Fig. 10(c) shows the comparison 
between experimental and numerical results for the isotropic loading tests 
performed at different suctions. The preconsolidation stress for each test was 
obtained by adding the matric suction stress s to the saturated preconsolidation 
stress (0.025 MPa), resulting in the following preconsolidation stresses: 0.07, 
0.09, 0.1, and 0.1 MPa for suctions of 0.05, 0.1, 0.15, and 0.2MPa, respectively. 
The values of parameter  for every suction were obtained from Fig. 10(b). These 
results show good agreement for both the preconsolidation stress and the overall 
volumetric behavior of the material. 

© 2013 The Author(s). Published by Bentham Science Publisher. This is an open access chapter published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
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CHAPTER 9 

Collapse Upon Wetting 

Abstract: This chapter presents the modeling of the phenomenon of collapse upon 
wetting using the effective stress equation and the elastoplastic framework proposed in 
the previous chapter. The probabilistic porous-solid model is used to obtain Bishop’s 
parameter  and then compute the current effective stress. The proposed framework 
includes the hysteresis of the SWRC and to some extent the hydro-mechanical coupling 
of unsaturated soils. This model is able to reproduce some particularities of the 
phenomenon of collapse upon wetting that other models cannot simulate. 

Keywords: Collapse upon wetting, unsaturated soils, effective stress, elastoplastic 
framework, yield surface, suction hardening, soil-water retention curve, 
hysteresis, hydro-mechanical coupling, porous-solid model, Bishop’s effective 
stress equation, compacted soils, neutral loading, suction controlled tests, 
preconsolidation stress. 

9.1. INTRODUCTION 

The Barcelona Basic Model [7] has been able to reproduce the main aspects of the 
phenomenon of collapse upon wetting using the independent stress variables 
approach (Fredlund and Morgenstern, 1977). The key point for the simulation of 
collapse in this model is the consideration that the apparent preconsolidation 
stress increases with suction (Fig. 1). This feature is introduced into the model 
through the Loading Collapse Yield Surface (LCYS) which adopts the geometry 
shown in Fig. 1(b). By analyzing the volumetric behavior of a soil sample subject 
to a drying-wetting cycle, the equation relating the yield stress in unsaturated ሺ݌ҧ଴ሻ 
and saturated ሺ݌ҧ଴

 ሻ conditions is obtained as a function of the slopes of the loadingכ
 curves of the soil in saturated (௦ߢ  and) and unloading-reloading (ሻݏሺߣ ሺ0ሻ andߣ)
and unsaturated conditions, respectively. This equation writes: 

ҧ଴݌
௥݌

ൌ ൬
ҧ଴݌
כ

௥݌
൰

ఒሺ଴ሻି఑
ఒሺ௦ሻି఑ೞ

where ݌௥ represents a reference pressure. In general, it can be considered that 
ߢ ൌ  ሻ depends on the values ofݏሺߣ ,௦ as their values are relatively small. In turnߢ 
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 ሺ0ሻ and suction. This equation represents the shape of the LCYS as shown inߣ
Fig. 1. When an increment of the net stress is applied to an initially saturated 
sample that has been dried to suction s (stress path AA’BD in Fig. 1), the initial 
LCYSi displaces on the mean net stress axis reaching the position LCYSf. 

The volumetric compression of the material during a net stress increase (݀ݒ௣) 
beyond the yield stress is given by: 

௣ݒ݀ ൌ െߣሺݏሻ
ҧ݌݀
ҧ݌

 

In the same way, the volumetric response of the soil during a suction increase 
 :beyond the Suction Increase Yield Surface (SIYS) is given by (௦ݒ݀)

௦ݒ݀ ൌ ௦ߣ
ݏ݀

ݏ ൅ ௔௧݌
 

where s represents the slope of the virgin compression line during suction 
increase, ds is the increment in suction and ݌௔௧ is the atmospheric pressure. When 
both net stress and suction are increased, the total volumetric response of the 
material (dv) is given by the addition of both terms, in the form: 

ݒ݀ ൌ ௣ݒ݀ ൅  ௦ݒ݀

 

(a) (b) 

Figure 1: (a) Volumetric behavior and (b) hardening of the LCYS in the BBM. 
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This model has been widely employed to reproduce the volumetric behavior of 
unsaturated soils with great success. 

Other models use the effective stress approach in their formulations, for example: 
Bolzon, Schrefler and Zienkiewics [118], Vaunat, Romero and Jommi [90], Loret 
and Khalili [97], Karube and Kawai [119], Gallipoli, Gens, Sharma and Vaunat 
[23], Wheeler, Sharma and Buison [22]. These models make use of Bishop’s 
effective stress ߪ௜௝

′  (1959): 

௜௝ߪ
ᇱ ൌ ௜௝ߪ െ ௔ݑ௜௝ሾߜ െ ߯ሺݑ௔ െ  ௪ሻሿݑ

The Bishop parameter  can be written as a function of the degree of saturation, 
suction or both. For example the model proposed by Gallipoli, Gens, Sharma and 
Vaunat [23] considers that  is equal to the degree of saturation. To account for 
the volumetric behavior of unsaturated soils the model includes the constitutive 
parameter  which represents the bonding and debonding stress produced by 
water menisci. This parameter is written as a function of the degree of saturation 
Sr in the form: 

ߦ ൌ ݂ሺݏሻሺ1 െ ܵ௥ሻ 

where f(s) is a function of suction representing interparticle forces. By analyzing 
the relationship between the ratio e/es with parameter , where e and es represents 
the voids ratio in unsaturated and saturated conditions when the soil is subject to 
the same Bishop stress, the flowing relationship was established: 

݁
݁௦
ൌ 1 െ ܽሾ1 െ  ሻሿߦሺܾ݌ݔ݁

With this model it is possible to model the volumetric response of soils subjected 
to increments of the mean net stress and wetting-drying cycles including the 
phenomenon of collapse. 

Another variation for the value of parameter  is presented by Alonso, Pereira, 
Vaunat and Olivella [120]. In this case the global degree of saturation of the 
material is split in two parts: one for the macrostructure ܵ௪ெ and another for the 
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microstructure ܵ௪௠ in the form ܵ௪ ൌ ܵ௪ெ ൅ ܵ௪௠. Then two possible equations for 
the value of parameter  are proposed. The first one is given by the expression: 

߯ ؠ ܵ௪௘ ൌ ۃ
ܵ௪ െ ܵ௪௠

1 െ ܵ௪௠
 ۄ

where ۄݔۃ ൌ ሺݔ ൅ ሻ|ݔ| 2⁄  represents the Macauley brackets. The other possibility 
is given by the expression: 

߯ ൌ ሺܵ௪ሻ௔ 

Where a represents a soil parameter which value is larger or equal to 1. With this 
model the authors have been able to reproduce the strength and volumetric 
behavior of unsaturated soils. 

The model by Della Vechia, Jommi and Romero [121] also uses the concept 
micro and macroporosity. It includes the evolution of the soil-water retention 
curve (SWRC) related to the volumetric deformation of the material and the 
hysteresis of the SWRC. This model is able to reproduce a maximum collapse 
strain with increasing confining stress. 

The model proposed by Wheeler, Sharma and Buison [22] considers a vertical 
LCYS on the plane of modified suction against mean Bishop’s stress. This surface is 
coupled to the SIYS and the Suction Decrease Yield Surface (SDYS) which are 
represented by horizontal lines in the same plane. Both the SIYS and SDYS are 
coupled with the LCYS. For example when a soil dries and suction exceeds the 
maximum historical value experienced by the soil, plastic strains occur that hardens 
the SIYS. This hardening is represented by a vertical displacement of the surface that 
pulls along the SDYS while the LCYS moves outwards. On the contrary, when 
suction reduces beyond the SDYS this surface is pulled downwards along with the 
SIYS while the LCYS moves inwards. This coupling between the yield surfaces 
allows modeling the phenomenon of collapse upon wetting as during the inward 
movement of the LCYS, the wetting path leaves the elastic zone. 

However, these models show deficiencies in reproducing one or more of the 
following particularities of the phenomenon of collapse upon wetting observed on 
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compacted materials tested at different densities and loaded at different net 
stresses: a) In most cases, there is an initial elastic response at the beginning of 
collapse. The extent of this elastic response depends on the value of the mean net 
stress applied during the loading stage b) collapse deformation depends on both 
the density and the stress state before collapse c) For increasing values of the 
mean net stress applied during the loading stage on samples compacted at the 
same density, the collapse volumetric strain increases and then decreases (i.e., 
there is a maximum collapse volumetric strain for samples compacted at the same 
density). This behavior has been experimentally observed by different researchers, 
for example: Sun, Sheng, Cui and Sloan [122]; Rodrigues and Volar [123]. 

This chapter shows the modeling of the phenomenon of collapse upon wetting 
based on the principle of effective stress resulting in a model able to reproduce the 
particularities listed above. More importantly, this treatment results in a unifying 
framework for saturated and unsaturated soils. 

9.2. VOLUMETRIC ELASTOPLASTIC FRAMEWORK 

Based on the elastoplastic framework developed in the preceding chapter, it is 
possible to simulate the phenomenon of collapse upon wetting of soils. In that 
sense, the shape of the LCYS needs to be established. This shape can be 
determined in a similar way as the usual experimental procedure employed in the 
laboratory: departing from a previous yield surface, a load is applied to produce 
plastic deformations that hardens the yield surface, then following an unloading 
path a new state of stresses is reached inside the elastic zone and finally the 
sample is loaded until yield is observed. This yielding defines another point on the 
hardened yield surface. For the numerical case, the same procedure can be applied 
except that the increment of the plastic deformation should be the same than that 
obtained with a different combination of stresses. In addition, all these different 
combinations of stresses need to depart from the previous yield surface and thus 
they can be reached following a neutral loading along the previous LCYS. 

In this case, it is considered that the initial yield surface is the one obtained after 
the first drying of the sample (dotted line CSD in Fig. 2). The plastic decrement of 
the void ratio produced by loading from point C to point E (which represents an 
increment of the effective stress of Δ݌ҧ െ ߯଴ ݏ଴) is 



Collapse Upon Wetting The Use of Effective Stresses in Unsaturated Soils   145 

௣݁߂ ൌ ݁஼ሺߣ െ ሻߢ ൬
ҧ݌߂ െ ߯଴ݏ଴
ҧ଴௜݌ ൅ 2߯଴ݏ଴

൰ 

In the same way, the plastic decrement of the void ratio produced by a net stress 
increase Δ݌ҧ௦ (which is equal to the effective stress increase) departing from point 
S is: 

Δ݁௣ ൌ ݁௦ሺߣ െ ሻߢ ൬
Δ݌ҧ௦

ҧ଴௜݌ ൅ ݏ߯ ൅ ߯଴ݏ଴
൰ 

Because point S is reached by following a neutral loading along the LCYS (red 
path CD) then, ݁௦ ൌ ݁஼ and, by equalizing the last two equations the following 
result is obtained: 

Δ݌ҧ௦ ൌ ൬
ҧ଴௜݌ ൅ ݏ߯ ൅ ߯଴ݏ଴
଴݌ ൅ 2߯଴ݏ଴

൰ ሺΔpത െ ߯଴ݏ଴ሻ 

 

Figure 2: Collapse upon wetting phenomenon. 
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ݏ ൌ 0 for the new state of stresses then Δpതୱ represents the hardening of the yield 
surface at the effective stress axis (Δ݌ҧ଴ in Fig. 2). The shape of the LCYS is 
sketched in Fig. 2 (dotted line EGF). Note that this shape depends not only on the 
value of the net stress increment Δ݌ҧ but also on the SWRC of the material trough 
parameter . 

When the soil wets after being loaded to point E, it follows a different path to that 
followed during the drying stage due to the hysteresis of the SWRC, although it 
intersects the effective stress axis with the same slope of 45

o
 when the soil fully 

saturates. Notice that in such a case the soil shows an initial elastic recovery 
before it collapses (wetting path EG). This is in agreement with the experimental 
results reported during the collapse of soils (see for example [122, 124]). At the 
end of collapse (point H) the state of the soil is similar to a saturated slightly 
preconsolidated material and thus the yield surface is represented by a curved line 
departing from the preconsolidation stress (dotted line IJ). This preconsolidation 
stress is given by the addition of the net stress increment (Δ݌ҧ) plus the hardening 
produced by the wetting-drying cycle. On the other hand, the net stress applied to 
the material only increases in the quantity Δ݌ҧ and represents the final position of 
the wetting cycle (point H) as shown in Fig. 2. If, at this point, a new drying cycle 
is applied (stress path HK), the soil initially shows an elastic recovery and then 
yields again because the stress path crosses the yield surface as it is observed in 
the same figure. 

The proposed framework corresponds well to the experimental results reported by 
Romero, Gens and Lloret [109]. These researchers performed suction-controlled 
oedometric tests on samples of Boom clay compacted at different densities and 
for different vertical stresses (Fig. 3). It can be observed that the soil initially 
behaves elastically during the first wetting; the smaller the vertical net stress the 
larger the elastic response. This occurs because when the mean net stress is large, 
the yield surface tilts further to the right and the wetting path crosses it earlier (see 
Fig. 2). At the end of the elastic behavior, the soil collapses. During the new 
drying cycle, the soil initially shows an elastic volumetric reduction and then 
yields. Finally, for the next wetting-drying cycles, the soil behaves elastically. It is 
noteworthy that some details of the volumetric behavior of unsaturated soils 
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cannot be captured by a model represented in terms of the independent stress 
variables approach as the hysteresis of the SWRC cannot be included. 

 

Figure 3: Volumetric behavior of Boom clay during wetting-drying cycles (after Romero, Gens 
and Lloret [109]). 

9.3. COMPACTED SOILS 

Now, consider that a soil sample is prepared in different layers by static compaction 
Because the stress path followed by the soil during compaction cannot be easily 
determined, it is difficult to establish the initial position of the LCYS even if the 
applied stresses during compaction and the value of suction in the”as compacted” 
state are known. Nevertheless, some considerations can be done to establish this 
initial position. During compaction, stresses are applied on top of a disaggregated 
material placed inside a mould. These stresses produce the displacement and 
interlock of solid particles and simultaneously menisci of water distribute mainly at 
the points of contact between solids. During loading, the solid particles are 
compressed and then decompressed when unloaded. At the same time, suction 
decreases during compression and increases during decompression. In that sense, it 
is possible that at the end of compaction the soil lies closer to the drying branch of 
the SWRC than to the wetting one. Here it is considered that the process of 
compaction induces a mean effective stress on the sample that can be decomposed in 
the addition of a mean net stress called here the interlock or fabric stress ݌௙௔௕ and 
the initial suction ݏ଴଴ (point B in Fig. 4). The fabric stress represents the apparent 
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mean preconsolidation stress of the compacted sample and can be determined in the 
same way as the preconsolidation stress for saturated soils. It is also considered that 
the “as compacted” LCYS initiates at the fabric stress (point A in Fig. 4) and reaches 
the point representing the”as compacted” state of stresses of the soil sample (point B 
in the same figure) following a drying path. 

After compaction the soil may be subjected to an equalization stage where a suction 
 ҧ଴ are applied to the sample following the stress path BCF݌ ଴ and mean net stressݏ
shown in Fig. 4. During the equalization stage, if suction ݏ଴ is larger than the “as 
compacted” suction (ݏ଴଴), then the LCYS hardens in the quantity ߯଴ݏ଴ െ ߯଴଴ݏ଴଴ and 
displaces to the position given by curve DE. Later, when the soil is loaded to reach 
the net stress ݌ҧ଴, the yield surface hardens by displacing and tilting, reaching the 
position shown by curve FG. If at this point the soil is wetted, the phenomenon of 
collapse may occur only if ݌ҧ଴ ൐ ߯଴ݏ଴ െ ߯଴଴ݏ଴଴. If the soil is further loaded by 
applying a mean net stress increment Δ݌ҧ଴ (path FH) then the LCYS displaces and 
tilts further reaching the position HJ indicated in Fig. 4. The suction at which the 
phenomenon of collapse initiates (point I) depends on both the applied suction ݏ଴ 
and the total increment of the mean net stress (݌ҧ଴ ൅  .(ҧ଴݌߂

The shape adopted by the hardened LCYS, once the net stress increment Δ݌ҧ଴ has 
been applied, can be determined using the procedure previously explained. In this 
case, points D and S located on the LCYS after the equalization stage (dotted line 
DE) are considered. Let ݁஽ and ݁௦ be the void ratios at points D and S, respectively. 
Because point S can be reached following a neutral loading from point D, the void 
ratio at both locations is the same (݁஽ ൌ ݁௦). Additionally, the plastic decrement of 
the void ratio produced by loading from point D to point H is: 

Δe୮ ൌ eDሺλ െ κሻ ൬
pത଴ െ χ଴s଴ ൅ χ଴଴s଴଴ ൅ Δpത଴
p୤ୟୠ ൅ 2χ଴s଴ െ χ଴଴s଴଴

൰ 

In the same way, the plastic decrement of the void ratio generated by a net stress 
increment Δ݌ҧ௦ is: 

Δ݁௣ ൌ ݁௦ሺߣ െ ሻߢ ቆ
Δ݌ҧ௦

௙௔௕݌ ൅ ݏ ߯ ൅ ߯଴ݏ଴ െ ߯଴଴ݏ଴଴
ቇ 
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By equalizing these two last equations the following result is obtained: 

Δ݌ҧ௦ ൌ ቆ
௙௔௕݌ ൅ ݏ߯ ൅ ߯଴ݏ଴ ൅ ߯଴଴ݏ଴଴
௙௔௕݌ ൅ 2߯଴ݏ଴ െ ߯଴଴ݏ଴଴

ቇ ሺ݌ҧ଴ െ ߯଴ݏ଴ ൅ ߯଴଴ݏ଴଴ ൅ Δ݌ҧ଴ሻ 

By adopting different values of suction, a set of values of Δpതୱ can be obtained and 
the effective stresses defining the LCYS for different values of suction can be 
plotted according to the following equation: 

pLCYS
ᇱ ൌ  p୤ୟୠ ൅ χs ൅ χ଴s଴ െ χ଴଴s଴଴ ൅ Δpതୱ… (9.1) 

 

 

Figure 4: Elastoplastic framework for the volumetric behavior of compacted soils. 

Moreover, a Wetting Path (WP) initiating at point H in Fig. 4 is defined by the 
following relationship: 
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where w represents the values of parameter  following a wetting path. By 
solving simultaneously Equations (9.1) and (9.2) it is possible to define the value 
of suction at which these two curves intersect. This value is called here the 
collapse suction. For suctions above this value the soil behaves elastically 
whereas for values bellow the collapse suction, elastoplastic behavior occurs. 
Once the collapse suction is known, it is possible to compute the void ratio 
reached at the end of collapse following path ACHK. To that purpose let the void 
ratio associated to point K be ݁ସ (see Fig. 4) and suppose that the WP crosses the 
LCYS at suction ݏ௖ (collapse suction). According to Equations (8.4) and (8.5) the 
void ratio reached at point K along path ACHK is given by: 
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On the other hand, the void ratio reached at this same point following path AK 
(normally consolidated line) is: 

݁ସ஺௄ ൌ ݁଴ ቆ
௙௔௕݌ ൅ ҧ଴݌ ൅ Δ݌ҧ଴
௙௔௕݌ ൅ ߯଴଴ݏ଴଴

ቇ
ఒ೐

 

It can be shown that in general ݁ସ஺௄ ൐ ݁ସ஺஼ு௄. This difference happens because 
the inclusion of the LCYS in the proposed framework produces elastic 
deformations during the loading and collapse stages along path ACHK. This 
elastic behavior reduces the final volumetric deformation when compared with 
that obtained along path AK. Different researchers have reported that the void 
ratio reached by samples at the end of collapse lie slightly below the normally 
consolidated line (see for example [122]). This happens because in addition to 
load increase, the samples have been subjected to a drying-wetting cycle and 
therefore the LCYS suffers additional hardening as explained in the previous 
section of this chapter. However as this additional volumetric deformation is 
small, as a first approach it is considered here that the soil reaches the normally 
consolidated line at the end of collapse. In that sense, the values of the volumetric 
deformation occurring during collapse must be corrected. To this purpose, the 
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difference in the volumetric deformation between both paths has to be added 
somehow to the computed value of collapse following path ACHK. For simplicity 
this difference is linearly distributed to the volumetric deformation along the 
collapse path in the form: 

Δ݁௖௖ ൌ Δ݁௖ ܨ௖… (9.3) 

where Δ݁௖௖ and Δ݁௖ represent the corrected and uncorrected increment of 
volumetric deformation during collapse and Fc is the collapse factor given by the 
relationship: 

௖ܨ ൌ 1 ൅
݁ସ஺஼ு௄ െ ݁ସ஺௄

Δ݁௖௙
 

where Δ݁௖௙ is the reduction in void ratio during collapse and is given by the 
relationship: 

Δ݁௖௙ ൌ ݁ଷߣ௘ ቆ
߯௪௖ݏ௖

௙௔௕݌ ൅ ҧ଴݌ ൅ Δ݌ҧ଴
ቇ 

where ݁ଷ represents the voids ratio at point I in Fig. 4 and ߯௪௖ represents Bishop’s 
parameter for suction ݏ௖ during a wetting path. 

Fig. 5 shows the values of the collapse factor (lines) as a function of the collapse 
suction and for different densities. It can be observed that this factor shows little 
variation for values of the collapse suction between 0.15 and 0.05 for the same 
density. For practical purposes it seems convenient to consider this factor as 
constant for all suctions and its value can be approached with the following 
empirical relationship that takes account of the density of the material: 

௖ܨ ൌ ቀ
௣೑ೌ್
௣ೌ೟

ቁ
ሺఒ೐ା఑೐ሻ

… (9.4) 

The values of this expression are also indicated in Fig. 5 (symbols). This factor 
has been used for the comparisons between numerical and experimental results 
shown in the next section. 
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Figure 5: Collapse factor for different densities. Comparison between the exact solution (lines) 
and the approached value (symbols). 

9.4. NUMERICAL AND EXPERIMENTAL COMPARISONS 

In this section, the proposed framework for the volumetric behavior of 
unsaturated soils has been used to simulate the response of samples compacted at 
different densities and subjected to loading-wetting paths. 

Sun, Sheng, Cui and Sloan [122] reported a series of suction controlled triaxial 
tests to observe the influence of the initial density on the collapse of compacted 
soil samples of Pearl clay. The specimens were prepared by static compaction in 
five layers with a vertical stress of 0.3MPa, 0.4MPa or 0.6MPa. This procedure 
resulted in void ratios ranging from 1.0 to 1.5 and suctions ranging from 0.09 to 
0.13MPa. The volumetric deformation of the sample was obtained by measuring 
its lateral and vertical displacements. The lateral displacements were measured at 
three different heights of the sample and the volume was obtained by approaching 
the lateral shape of the sample to a third order polynomial equation. After 
compaction, all samples were subject to an equalization stage by applying a 
suction of 0.147MPa and an isotropic mean stress of 0.02MPa. Then the 
specimens were isotropically loaded to a previously specified net stress under a 
constant suction of 0.147MPa. Finally, suction was decreased by steps from 0.147 
to 0MPa maintaining the nets stress constant. During this wetting stage, the 
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SWRCs for the different densities and for each isotropic stress were obtained. 
Finally, the GSD of the material was also reported. 

In order to be able to simulate the volumetric behavior of soils within the 
framework proposed in this paper, the values of parameter  need to be 
determined according to the wetting-drying history of the soil. To this purpose the 
porous-solid model is used along with the SWRC of the material. As explained 
before, by fitting the main wetting and drying SWRCs of the material it is 
possible to determine the PSD of cavities and bonds. Then it is possible to 
simulate any drying-wetting process and define the parameters f s, f u and ܵ௪௨  
required to determine the value of parameter . Unfortunately, during the 
implementation of these tests only the wetting SWRC of the material was 
obtained. Therefore, only the wetting branch could be fitted with the experimental 
points while the drying branch was guessed. 

Fig. 6(a) shows the fitting of the wetting branch of the SWRC and the guess made 
for the drying branch for a sample compacted at a void ratio of e = 1.33. From this 
fitting, the PSD of cavities and bonds for this specific density of the material 
could be found. Fig. 6(b) shows the cavity size distribution of samples compacted 
at different void ratios (including that for e = 1.36) and their comparison with the 
GSD of the material. In this figure the reduction in cavity sizes for the different 
compacted void ratios can be observed. 
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(e) 

Figure 6: Numerical simulations obtained with the porous-solid model. (a) Fit of the wetting 
curve, (b) cavity size distribution for different densities and GSD of the material, (c) and (d) 
parameters f s, f u, f d and ࢛࢝ࡿ  at drying and wetting, respectively and (e) values of parameter  at 
drying and wetting. 

Once the PSD of the material has been established, it is possible to determine the 
values of parameters f s, f u, f d and ܵ௪௨  by simulating the drying and wetting 
process of the soil. These parameters are shown in Figs. 6(c) and 6(d) for the 
drying stage (reaching a maximum suction of 0.15MPa) and the subsequent 
wetting stage, respectively. Using Equation (2.15) it is now possible to define the 
value of parameter  during the drying and wetting stages. These values are 
shown in Fig. 6(e) as a function of suction. Once this parameter has been defined 
it is now possible to determine the mean effective stress at any stage of the test 
(Equation (2.14)), simulate the behavior of the material at loading (Equation 
(8.4)), define the geometries of the LCYS and the WP (Equations (9.1) and (9.2), 
respectively), define the point at which these curves intersect and finally, 
determine the volumetric response of the soil during collapse (Equations (8.4), 
(8.5), (9.3) and (9.4)). This same procedure has to be done for each density of the 
material and for each value of the mean net stress. 

9.4.1. Isotropic Compression 

The comparison between experimental and numerical results for samples 
compacted at different densities and subject to isotropic loading is presented in 
Fig. 7. The average initial void ratios of tested samples were: 1.36, 1.28, 1.17 and 
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1.05. Curves for both unsaturated and saturated conditions are presented. These 
curves were obtained using Equation (8.4) with e = -0.12. Arrows in this figure 
indicate the value of the fabric stress for each density. The fabric stress for the 
samples compacted at void ratios of 1.36, 1.28, 1-17 and 1.05 were 0.03, 0.06, 
0.09 and 0.15, respectively. In general, there is good agreement between 
experimental and numerical results although for samples compacted at a void ratio 
of 1.28, the results are not as good as for the other samples. 

 

Figure 7: Isotropic loading tests on samples compacted at different densities. The first number 
identifying the test indicates the “as compacted” void ratio and the number in parenthesis indicates 
the value of suction during compression in MPa. Ex and N stand for experimental and numerical 
results, respectively. 

9.4.2. Collapse Upon Wetting 

Figs. 8-11 show some experimental and numerical comparisons for soils samples 
compacted at four different densities (e0=1.05, 1.17, 1.28 and 1.36, respectively) 
then loaded to different isotropic stresses and finally subjected to wetting. In these 
figures, plots (a) represent the shapes of both the LCYS and the WP in the axis of 
effective stress against suction for samples compacted at the same density and 
loaded at different isotropic stresses (ranging from 0.02 to 0.6MPa). Plots (b) 
represent the volumetric response of the soil during the wetting stage in the axis 
of suction against volumetric strain. Finally, plots (c) represent the collapse 
volumetric strain of the sample against the applied mean net stress. The LCYS 
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and the WP were obtained from Equations (9.1) and (9.2), respectively. In plots 
(a) and (b) an initial elastic rebound of the material can be observed followed by 
the collapse. This type of behavior has also been experimentally observed by 
Rodrigues and Volar [123]. The value of the unloading-reloading slope 
considered for these simulations was e = -0.01. It can also be noticed that 
depending on the isotropic net stress applied to the sample, the WP crosses the 
LCYS at different stages of the wetting process. The larger the isotropic net stress 
applied during the loading stage, the earlier the phenomenon of collapse appears 
during the wetting stage. For sample compacted at a void ratio of 1.05 and loaded 
to 0.02MPa, collapse never occurs. Instead, for samples compacted at void ratios 
of 1.17, 1.28 and 1.36 and loaded at the same isotropic stress, collapse occurs 
close to saturation. This happens because the net stress applied to these samples, 
ҧ଴݌ ൌ 0.02MPa, is close to the value ߯଴ݏ଴ െ ߯଴଴ݏ଴଴ representing the hardening of 
the LCYS during the equalizing stage. 

The start of collapse and the evolution of the volumetric deformation of the soil 
during collapse are correctly simulated by the model (see Figs. 8(b), 9(b), 10(b) 
and 11(b)). However, for samples compacted at large void ratios (e = 1.28, 1.36) 
and subjected to large isotropic stresses, the slope of the numerical volumetric 
strain against suction remains low compared with the experimental results. This 
causes under predicted volumetric strains for large values of the mean net stress. 
In spite of these differences, it can be observed that numerical simulations 
correctly predict a maximum collapse volumetric strain with increasing mean net 
stress (Figs. 8(c), 9(c), 10(c) and 11(c)). 

As stated before, this model includes the hysteresis of the SWRC and to some 
extent the hydro-mechanical coupling of unsaturated soils as the reduction on the 
size of cavities due to loading or suction increase is still not included in the 
porous-solid model. 

The data required by the model to produce these simulations are: the secondary 
drying and wetting SWRCs, the GSD of the material, the fabric stress ݌௙௔௕, the 
slope of both the normally consolidated line (ߣ௘) and the unloading-reloading line 
 plotted on a logarithmic plane of void ratio versus mean effective stress, the (௘ߢ)
initial mean net stress (݌ҧ଴), suction (ݏ଴) and voids ratio of the material (݁଴) and 
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the previous loading history or fabrication process in order to define the initial 
position of the LCYS. 

 

(a) 

 

(b) 

 

(c) 

Figure 8: Samples compacted at an initial void ratio e0=1.05. (a) LCYSs and WPs, (b) volumetric 
strain against suction and (c) volumetric strain against mean net stress. 
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(a) 

 

(b) 

 

(c) 

Figure 9: Samples compacted at an initial void ratio e0=1.17. (a) LCYSs and WPs, (b) volumetric 
strain against suction and (c) volumetric strain against mean net stress. 
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(a) 

 

(b) 

 

(c) 

Figure 10: Samples compacted at an initial void ratio e0=1.28. (a) LCYSs and WPs, (b) 
volumetric strain against suction and (c) volumetric strain against mean net stress. 
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(a) 

(b) 

(c) 

Figure 11: Samples compacted at an initial void ratio e0=1.36. (a) LCYSs and WPs, (b) 
volumetric strain against suction and (c) volumetric strain against mean net stress. 
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CHAPTER 10 

General Elastoplastic Framework 

Abstract: In the previous chapters it has been shown that the principle of effective 
stress can be applied to the shear strength, the tensional strength and the volumetric 
behavior of unsaturated soils. This chapter shows that the critical void ratio plotted 
against the mean effective stress for samples tested at different suctions align parallel to 
the virgin consolidation line of the material. This means that the critical state concept 
also applies to unsaturated materials. Taking into account all these results, an 
elastoplastic framework that can be used to develop general constitutive models for 
soils including saturated, unsaturated and compacted materials is presented. 

Keywords: Critical state concept, critical void ratio, effective stress, virgin 
consolidation line, elastoplastic framework, elastic zone, constitutive models, 
tensional strength, volumetric behavior, effective stress, yield surface, plastic 
deformations, suction hardening, failure surface, preconsolidation stress. 

10.1. CRITICAL STATE 

An aspect that requires reviewing is the critical state concept for soils that are 
tested at different suctions. Wheeler and Sivakumar [83] performed a series of 
triaxial tests on samples of unsaturated compacted speswhite kaolin. The samples 
were prepared by static compaction in a mould at 25% water content. The tests 
were conducted in double-walled triaxial cells designed to accurately measure the 
volume change of the samples during the test. In Chapter 6, the strength of 
unsaturated samples subjected to different suctions was predicted using the 
concept of effective stress. These simulations showed that a unique failure surface 
can be obtained when results are plotted on the plane of the mean effective stress 
against the deviator stress at the critical state. Figs. 1 and 2 shows the void ratio at 
the critical state against the logarithm of the effective stress for two different types 
of soil samples tested at different suctions. The effective stresses plotted in Fig. 1 
were obtained from data previously reported by Rojas [87]. These results show 
that the critical void ratio for different suction aligns in parallel curves with the 
same slope of the virgin consolidation line (VCL). This same result has been 
found by other researchers in different soils (see for example [117]). This means 
that the critical state concept can also be applied to the case of unsaturated 
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materials and this opens the possibility of developing general constitutive models 
for any type of soil based on the critical state theory. 

Figure 1: Critical state for speswhite samples tested at different suctions. Experimental data by 
Wheeler and Sivakumar [83]. 

Figure 2: Critical state for residual gneiss samples tested at different suctions. Experimental data 
by Futai and Almeida [92]. 

10.2. GENERAL ELASTOPLASTIC FRAMEWORK 

For the case of complex stress paths that may include an initial drying followed 
by net stress increase or decrease ending with further drying, it is possible that the 
imposed stress path surpasses the maximum historical suction applied to the 
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sample at different values of the mean net stress. Therefore, in order to complete 
the elastoplastic framework for the volumetric behavior of unsaturated soils 
presented in Chapter 8 it is convenient to bound the elastic zone by including the 
SIYS. For that purpose, the same reasoning used to define the shape of the LCYS 
can be used for the SIYS. It has been shown that the drying of a soil sample 
produces suction hardening. This means that in order to produce plastic 
deformation on an initially saturated sample by increasing the mean net stress 
after it has been dried by increasing suction up to value s, the mean net stress 
needs to exceed the yielding value which results from the addition of the 
preconsolidated mean net stress plus the suction stress s (see Fig. 3(a)). 

On the contrary, when a sample is loaded by increasing the mean net stress, the 
suction yield stress is not affected. In other words, there is no mean net stress 
hardening due to suction increase. Therefore, when a soil has been subjected to a 
suction s and then the net stress increases or reduces, the yield point for suction 
does not change. This happens because suction is different in nature to net stress. 
While suction is an internal stress, the net stress is applied externally to the 
sample. Then, when a soil dries, additional contact stresses develop mainly at the 
contact between particles. These additional contact stresses produce the same 
effect as an increase in the preconsolidation net stress of the sample. In contrast, 
when the net stress increases while suction remains constant, the additional 
contact stresses produced by water menisci are not affected and the suction yield 
stress remains constant. 

The influence of the mean net stress on the SIYS has been studied by Thu, 
Rahardjo and Leong [125] who performed a series of triaxial tests on compacted 
samples of coarse kaolin subjected to different confining stresses. These results 
show that the SIYS is only slightly affected by the value of the mean net stress. In 
brief, when suction increases, the LCYS displaces parallel to the drying path in 
the quantity s while the SIYS displaces vertically to the maximum value of 
suction and remains basically horizontal. Accordingly, the observation made by 
Nuth and Laloui [126] in the sense that the SIYS can be omitted from the model is 
valid, as it can be substituted by the maximum historical value of suction. 
Moreover, even if the intersection between the SIYS and the LCYS is not smooth, 
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the volumetric strain produced by a combination of net stress and suction increase 
at the intersecting point is still obtained from Equation (8.3). 

Based on these considerations, a general elastoplastic framework for the 
volumetric behavior of soils in the axes of mean effective stress against suction 
and under the assumptions of the critical state theory is shown in Fig. 3. Figs. 3(a) 
and (b) represent the volumetric behavior of a soil sample in the axis of the void 
ratio against the mean net stress and the mean effective stress, respectively. 
Initially, the sample is saturated (point A) and follows a drying path up to suction 
 ҧ (path݌଴ (point B). Then it is subjected to an increment of the mean net stress Δݏ
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Figure 3: General elastoplastic framework on the mean effective stress-suction plane under the 
critical state theory. 
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BCD) and finally, it is wetted up to saturation (point F). During the saturation 
stage, the sample initially increases its volume as the effective stress reduces 
inside the elastic zone (path DE) and subsequently it collapses (path EF). These 
figures also show the Virgin Consolidation Line (VCL) for saturated conditions. 
Fig. 3(c) shows the stress path followed by the sample and the evolution of the 
LCYS in the plane of mean effective stress against suction. It is noteworthy that at 
point C (Figs. 3(a) and (b)), the soil will not collapse upon wetting because it 
remains inside the elastic zone (see Fig. 3(c)). Therefore, when the sample is re-
saturated it moves from point C to B’ in Figs. 3(a), (b) and (c). The drying-
wetting path in Fig. 3(b) shows the loop BDB´ because of the hysteresis of the 
SWRC. Only when the state of stresses surpasses point C, the material will be 
able to show some irreversible deformation upon wetting. Finally, Fig. 3(d) 
represents the yield surface in the plane of mean effective stress against the 
deviator stress. In this figure ݌଴

଴݌ ᇱ andכ
ᇱ  represent the mean effective 

preconsolidation stress in saturated conditions and the yield mean effective stress 
at suction ݏ଴, respectively, both considered at the end of the loading stage. This 
framework is based on the critical state theory and can be used to develop a 
complete and general elastoplastic models that account for the behavior of 
saturated, unsaturated and compacted materials. 

A drawback to this approach is that the constitutive model should be coupled with 
a reliably porous-solid model able to simulate the distribution of water in the 
pores of the material. On the other hand, a phenomenon that has not been included 
in the above simulations is the effect of the progressive change of the PSD and its 
influence on the SWRCs due to the volumetric deformation of the soil during 
shearing or suction increase. Another aspect that needs to be reviewed in the 
model is the influence of the adsorbed water layer for the case of clays. 
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GLOSSARY 

A = total area of a cross section of an unsaturated soil 

aA = total area of the cross section where air reacts 

wA = total area of the cross section where water reacts 

sA  = total area of the cross section where solids react 

sA = area of the saturated fraction 

uA = area of the unsaturated fraction 

u
aA = area of the unsaturated fraction where air reacts 

s
sA = area of solids of the saturated fraction 

u
sA = area of solids of the unsaturated fraction 

u
saA = horizontal projection of the peripheral area of solids in contact with 

air in the unsaturated fraction 

s
swA
 = horizontal projection of the peripheral area of solids subject to 

water pressure in the saturated fraction 

u
swA = horizontal projection of the peripheral area of solids in contact with 

water in the unsaturated fraction 

u
vA = area of voids in the unsaturated fraction 

s
wA = area of the saturated fraction where water reacts 

u
wA = area of the unsaturated fraction where water reacts 

a = contact area between solid particles per unit area of material 

 ሺܴ஼ሻ = probability function of the relative volume of bondsܤ
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 ஺ሺܴ஼ሻ = adjusted probability function for bondsܤ

C = connectivity (number of bonds converging at one site) 

cC  = cluster coefficient 

eC = compressibility of the solid structure of the soil 

sC = compressibility of the solid material comprising the particles 

SBC  = fraction of sites and bonds in closed clusters 

c = soil cohesion

D = diameter of a spherical particle 

eD = equivalent diameter of clay particles 

d = diameter of a pore 

e = void ratio

df = dry soil fraction 

sf = saturated soil fraction 

uf  = unsaturated soil fraction 

஻஽ܨ
௦  = saturation factor for bonds during drying 

஻ூܨ
௦  = saturation factor for bonds during wetting 

஻ூ஽ܨ
௦  = saturated wetting factor for bonds after a drying inversion 

ௌ஽ܨ
௦  = saturated darying factor 

ௌ஽ூܨ
௦  = saturated wetting factor for sites after a drying inversion 

ௌ஽ܨ
ௗ  = dry factor for cavities in the solid unit during a drying process 
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ௌூܨ
௦  = saturation factor for cavities during wetting 

ௌூ஽ܨ
௦  = drying saturation factor for cavities after drying inversion 

 ஻஽ோ = bonds invaded by gas at the end of a drying inversionܩ

 ஻஽భ = probability of an external bond to be filled with gas during dryingܩ

 ஻ூ = probability of the bond to be filled with gasܩ

 ௉஽ = probability of a solid to be surrounded exclusively by pores filledܩ
with gas during drying 

 ௉ூ = probability of a solid to be surrounded exclusively by pores filledܩ
with gas during wetting 

 ௌ஽ோ = sites invaded by gas at the end of a drying inversionܩ

 ௌூ = probability of a cavity to be filled with gasܩ

k = parameter related to the effective stress for saturated soils 

 ஻஽ = probability of a bond to be liquid-filledܮ

 ஻஽ோ = probability of a bond to be liquid-filled at the moment of a dryingܮ
inversion 

 ஻஽ூ = probability of a bond to be liquid-filled after an inversion in dryingܮ

 ஻஽భ = probability of an external bond to be filled with liquidܮ

 ஻ூ = probability of a bond to saturate during a wetting processܮ

 ஻ூ஽ = probability of a bond to be liquid-filled at drying after a wettingܮ
inversion 

 ஻ூோ = probability of a bond to be liquid-filled at the moment of a wettingܮ
inversion 
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஻ூభܮ  = probability of an external bond to be saturated 

 ௌ஽ = probability of a cavity to saturated during a drying processܮ

 ௌ஽ூ = probability of a cavity to be liquid-filled after an inversion inܮ
drying 

 ௌ஽ோ = probability of a site to be liquid-filled at the moment an inversionܮ
in drying 

 ௌ஽భ = probability of surrounding sites to be liquid filled during a dryingܮ
process 

 ௌூ = probability of a cavity to saturate during a wetting processܮ

 ௌூ஽ = probability of a site to be liquid-filled at drying after a wettingܮ
inversion 

 ௌூோ = probability of a site to be liquid-filled at the moment of a wettingܮ
inversion 

 ௌூభ = probability of a surrounding site to be liquid filledܮ

 ௦̃஽ = probability that all pores surrounding a solid are saturated during aܮ
drying process 

 ௦̃ூ = probability that all pores surrounding a solid are saturated during aܮ
wetting process 

n = soil porosity 

௩ܲ௙ = Proportional volume factor 

p = mean net stress 

p  = mean effective stress 

p = mean total stress 
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Patm = atmospheric pressure 

q = deviator stress

R = mean size

BR = mean size for bonds 

cR = critical radius or maximum size of a pore to be filled with water at 
certain suction 

SR = mean size for sites 

Br = radius of a bond 

s
sr = ratio of the volume of saturated solids to the total volume of solids 

s
vr = ratio of the volume of saturated voids to the total volume of voids 

Sr = radius of a site 

ܵሺܴ஼ሻ = probability function of the relative volume of cavities 

஺ܵሺܴ஼ሻ = adjusted probability function for sites 

fS = shape factor for the solid particles 

wS = degree of saturation 

ܵ௪௘ = effective degree of saturation 

ܵ௪஽ሺܴ஼ሻ = degree of saturation at drying 

ܵ௪ூሺܴ஼ሻ = degree of saturation at wetting 

u
wS = degree of saturation of the unsaturated fraction 

s = soil suction
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ms = suction in a pore filled with mercury 

ws = suction in a pore filled with water 

Ts = liquid-gas interfacial tension

smT = superficial tension for mercury

swT = superficial tension for water 

u = pore pressure for saturated soils

au = air pressure

wu = water pressure

V = total volume of a portion of soil 

aV  = air volume 

஻ܸ = volume of bonds 

஻ܸூ
௦  = volume of saturated bonds during wetting 

஻ܸூ஽
௦  = volume of saturated bonds during drying after a wetting inversion 

஻ܸோ = volume of all bonds of size R 

஻ܸ
ௗ = voluem of bonds of the dry fraction 

஻ܸ
௦ = volume of saturated bonds 

௦ܸ̃ = volume of solids 

௦ܸ̃
ௗ = volume of solids of the dry fraction 

ௌܸ = volume of cavities 

ௌܸ
ௗ = volume of cavities of the dry fraction 
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ௌܸ
௦ = volume of saturated cavities 

ௌܸூ
௦  = volume of saturated cavities during a wetting process 

ௌܸூ஽
௦  = volume of saturated sites during drying after a wetting inversion 

ௌܸோሺܴሻ = volume of all sites of size R 

஻ܸ
ௗ = volume of dry bonds 

஻ܸ஽
௦ ሺܴ஼ሻ = volume of saturated bonds during drying 

஻ܸ஽ூ
௦ ሺܴ஼ሻ = volume of saturated bonds at wetting after a drying inversion 

஻ܸூ
௦ ሺܴ஼ሻ = volume od saturated bonds at wetting 

஻ܸோሺܴሻ = volume of bonds of size R 

௦ܸ̃ூ
௦  = volume of saturated solids 

ோܸ஻ሺܴሻ = relative volume of bonds of size R 

ோܸௌሺܴሻ = relative volume of cavities of size R 

ௌܸோሺܴሻ = volume of all sites of size R 

ௌܸ஽
௦ ሺܴ஼ሻ = volume of saturated sites at drying 

ௌܸ஽ூ
௦ ሺܴ஼ሻ = volume of saturated sites at the end of a drying inversion 

ௌܸூ
௦ ሺܴ஼ሻ = volume of saturated cavities during wetting 

vV = volume of voids of the soil sample 

wV  = water volume 

sV = volume of the saturated fraction of the sample 

uV = volume of the unsaturated fraction of the sample 
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u
aV = volume of air of the unsaturated fraction 

s
sV = volume of solids of the saturated fraction 

u
sV = volume of solids of the unsaturated fraction 

u
saV = volume of solids influenced by the pressure of air in the 

unsaturated fraction 

u
swV = volume of solids influenced by the pressure of water in the 

unsaturated fraction 

s
vV = volume of voids of the saturated fraction 

u
vV = volume of voids of the unsaturated fraction 

s
wV = volume of water of the saturated fraction 

u
wV = water volume of the unsaturated fraction 

v = specific volume

  = Bishop’s effective stress parameter 

ij = Kronecker’s delta  1, ; 0,ij iji j i j    
 

m = contact angles of mercury with the minerals of soil

w = contact angles of water with the minerals of soil

 = fitting parameter

 = total stress

 = standard deviation

B = standard deviation for bonds 

S = standard deviation for sites 
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   = effective stress 

s   = matric suction stress 

i = principal total stress in direction i 

i  = principal effective stress in direction i 

ij  = total stress tensor 

ij  = effective stress tensor 

 = net stress

 = shear stress internal friction angle 

 = friction angle of the material comprising the solid particles 
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SUMMARY 

When Karl von Terzaghi applied the effective stress principle in the soil 
mechanics theory, the strength and volumetric behavior of saturated soils could be 
clearly understood and general constitutive models for these materials could be 
developed. This eBook shows that the principle of effective stress can also be 
applied to unsaturated soils and that the same equations used to determine the 
strength and volumetric behavior of saturated soils can be applied to unsaturated 
materials. These developments open the door for general constitutive models that 
include saturated, unsaturated and even compacted materials leading to a unified 
soil mechanics theory. 
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Macropore: 19, 20, 35-37, 44, 56, 57, 63, 67, 68, 70, 87, 88, 91, 92, 94, 102, 103. 
Matric suction stress: 15, 16, 89, 92, 93, 95-97, 104, 107, 115, 117, 140, 156. 
Mean net stress: 1, 7, 14, 23, 99-107, 115, 117, 119-121, 124, 125, 132-137, 140, 

154. 
Mean total stress: 14, 154. 
Meniscus: 6, 8, 9, 15, 18, 21-23, 93, 96, 97, 101, 102, 115, 121, 125, 140. 
Mercury intrusion porosimetry: 57, 67-74, 81-85, 87, 90, 102, 110, 158. 
Mesopore: 19, 20, 35-37, 44, 56, 57, 63, 65, 67, 68, 70, 87, 88, 91, 94, 102, 103. 
Micropore: 19. 
Net stress: iii, 1-3, 8, 13, 15, 25, 86, 87, 93, 98, 109, 111, 112, 115, 122, 123, 126, 

129, 139, 157. 
Network model: 34, 35, 39, 41, 43, 44, 61, 73, 74. 
Normal stress: 15. 
Normally consolidated line: 127, 133. 
Normally consolidated soil: 104. 
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Oedometer: 107, 114. 
Oedometric test: 124. 
Osmotic suction: 93. 
Phase: iii, 9, 10, 11, 12, 16, 44, 51, 59. 
Plastic deformation: 104, 122, 140. 
Pore size distribution: iii, 18-20, 24-27, 30, 32, 36, 56, 57, 63, 67, 68, 70, 71, 73, 

74, 76-87, 90, 94, 96, 102, 107, 109, 110, 114, 129, 131, 143, 158. 
Porosimetry tests: 44, 56, 57, 67, 73, 
Porosity: 5, 63. 
Porous model: iii, iv, 17, 18, 29-32, 37, 39, 42, 43, 61, 67-70, 72, 91, 94, 102. 
Porous-solid model: iii, iv, 17-19, 29, 32, 34, 43, 44, 56, 57, 86-88, 91, 93, 94, 97, 

102, 107, 119, 129, 131, 143 
Preconsolidation stress: 99, 101, 104, 113, 115, 117, 119, 123, 125, 140, 141. 
Probabilistic model: 43, 44, 48, 61, 62, 81, 86. 
Psychrometer: 74. 
Random model: 25, 35. 
Residual degree of saturation: 7, 15, 39, 51. 
Residual water content: 73. 
Saturated fraction: 8, 9, 10, 12-15, 18, 55, 56, 91, 103, 107, 153, 156. 
Scanning curves: iii, 31, 32, 34, 39, 42, 57, 60, 61, 63. 
Scanning electron micrographs: 69, 70, 81, 158. 
Shape factor: 37, 57, 75, 88, 155. 
Shear strength: 4, 5, 8, 11, 14-16, 56, 86, 138. 
Shrinkage: 19, 20, 73, 101, 102. 
Site: 19, 20, 27, 30, 31, 35-40, 44, 47-49, 50, 51, 53-55, 57- 61, 63-66, 70, 72, 75, 

153-156,
Soil mechanics: iii, iv, 12, 67. 
Soil structure: 5, 103. 
Soil-water retention curve: iii, 1, 6, 9, 16, 18-21, 24, 30-32, 34, 43, 44, 46, 48, 51, 

56, 57, 61, 63-67, 69, 70, 71, 73-75, 81-87, 89, 91, 94, 96, 102, 104, 107-
112, 114, 117-119, 123-125, 129, 133, 140, 143, 158. 

Solid phase: 44, 51. 
Specific volume: 86, 99, 100, 156. 
Stress path: 23, 86, 100, 104, 109, 119, 124, 125, 139, 140. 
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Stress state variables: 2. 
Stress-strain curve: 2. 
Suction: iii, 1-3, 6-9, 14-16, 18-20, 22-24, 26, 31, 32, 38, 40, 43, 46, 48, 51, 53, 

56, 60, 61, 65, 66, 68, 70, 73, 74, 81, 82, 86-89, 91, 93, 94, 96-104, 107, 
109-115, 117, 119-121, 123-129, 131-143.

Superficial tension: 68, 69, 155. 
Surface tension: 67. 
Tension stress: 97. 
Tension test: 93, 94, 96, 97. 
Three dimensional: 11, 22, 32, 34, 158. 
Total stress: 2, 86, 156. 
Triaxial test: 2, 6, 86, 87, 102, 129, 138, 140. 
Two-dimensional: 22, 23, 158. 
Unloading-reloading index: 104, 119, 133. 
Unsaturated soil: iii, iv, 1-3, 5, 7, 8, 10, 14-16, 18, 19, 21, 22, 43, 67, 71, 73, 86, 

93, 98-101, 103, 104, 107, 119-122, 124, 129, 133, 138, 139. 
Unsaturated fraction: 8, 10-13, 18, 56, 91, 96, 103, 107, 153, 155, 156. 
Virgin compression line: 120, 138, 140, 158. 
Void ratio: 1, 2, 6, 14, 18, 24-27, 32, 36, 37, 43, 100, 101, 104, 107, 109, 115, 

122, 125-129, 132-138, 140, 153. 
Volume change: 18, 69, 86, 87, 138, 143. 
Volumetric deformation: 4, 32, 43, 73, 102, 103, 127, 129, 133. 
Water content: 6, 22, 24, 38, 60, 61, 63, 69, 73, 86, 87, 93, 94, 97, 107, 114, 117, 

138. 
Water menisci: 8, 9, 18, 22, 23, 97, 101, 121, 140. 
Water pressure: 1, 2, 9, 10, 12, 153, 155. 
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