Skip to content
2000

Pulse Wave Propagation in Large Blood Vessels Based on Fluid- Solid Interactions Methods

image of Pulse Wave Propagation in Large Blood Vessels Based on Fluid- Solid Interactions Methods
Preview this chapter:

Pulse Wave Velocity (PWV) is recognized by clinicians as an index of mechanical properties of human blood vessels. This concept is based on the Moens- Korteweg equation, which describes the PWV in ideal elastic tubes. However, measured PWV of real human blood vessels cannot be always interpreted by the Moens-Korteweg equation because this formula is not precisely applicable to living blood vessels. It is important to understand the wave propagation in blood vessels for a more reliable diagnosis of vascular disease. In this study, we modeled uniform arteries in a threedimensional coupled fluid-solid interaction computational scheme, and analyzed the pulse wave propagation. A commercial code (Radioss, Altair Engineering) was used to solve the fluid-solid interactions. We compared the regional PWV values obtained from various computational models with those from the Moens-Korteweg equation, and discuss the accuracy of our computation. The PWV values from the thick-walled artery model are lower than those from the Moens-Korteweg equation. Nevertheless, the differences are less than 7% up to 12 m/s of the PWV, indicating these computational methods for the PWV analysis are accurate enough to evaluate its value quantitatively.

/content/books/9781608052950.chapter-17
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9781608052950
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test